Java 类名:com.alibaba.alink.operator.batch.dataproc.StringIndexerTrainBatchOp
Python 类名:StringIndexerTrainBatchOp
StringIndexer训练组件的作用是训练一个模型用于将单列字符串映射为整数。
如将一列映射为整数,需指定 setSelectedCol 设定。
同时,该组件支持输入多列,生成一个映射词典,通过 setSelectedCols 设定其他需要补充的列名。
特征的排列顺序支持 random,frequency_asc,frequency_desc,alphabet_asc,alphabet_desc 五种排序方法。
注意:输入多列时,所有列必须为相同格式。
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 | 
|---|---|---|---|---|---|---|
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | 所选列类型为 [INTEGER, LONG, STRING] | |
| modelName | 模型名字 | 模型名字 | String | |||
| selectedCols | 选中的列名数组 | 计算列对应的列名列表 | String[] | 所选列类型为 [INTEGER, LONG, STRING] | null | |
| stringOrderType | Token排序方法 | Token排序方法 | String | “RANDOM”, “FREQUENCY_ASC”, “FREQUENCY_DESC”, “ALPHABET_ASC”, “ALPHABET_DESC” | “RANDOM” | 
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
    ["football", "apple"],
    ["football", "apple"],
    ["football", "apple"],
    ["basketball", "apple"],
    ["basketball", "apple"],
    ["tennis", "pair"],
    ["tennis", "pair"],
    ["pingpang", "banana"],
    ["pingpang", "banana"],
    ["baseball", "banana"]
])
data = BatchOperator.fromDataframe(df, schemaStr='f0 string,f1 string')
stringindexer = StringIndexerTrainBatchOp() \
    .setSelectedCol("f0") \
    .setSelectedCols(["f1"]) \
    .setStringOrderType("alphabet_asc")
model = stringindexer.linkFrom(data)
model.print()
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.dataproc.StringIndexerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class StringIndexerTrainBatchOpTest {
	@Test
	public void testAlphabetAsc() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("football", "apple"),
			Row.of("football", "apple"),
			Row.of("football", "apple"),
			Row.of("basketball", "apple"),
			Row.of("basketball", "apple"),
			Row.of("tennis", "pair"),
			Row.of("tennis", "pair"),
			Row.of("pingpang", "banana"),
			Row.of("pingpang", "banana"),
			Row.of("baseball", "banana")
		);
		BatchOperator <?> data = new MemSourceBatchOp(df, "f0 string,f1 string");
		BatchOperator <?> stringindexer = new StringIndexerTrainBatchOp()
			.setSelectedCol("f0")
			.setSelectedCols("f1")
			.setStringOrderType("alphabet_asc");
		BatchOperator model = stringindexer.linkFrom(data);
		model.print();
	}
}
模型表:
| token | token_index | 
|---|---|
| pingpang | 6 | 
| banana | 1 | 
| baseball | 2 | 
| basketball | 3 | 
| pair | 5 | 
| apple | 0 | 
| football | 4 | 
| tennis | 7 |