swing推荐 (SwingRecommStreamOp)

Java 类名:com.alibaba.alink.operator.stream.recommendation.SwingRecommStreamOp

Python 类名:SwingRecommStreamOp

功能介绍

Swing 是一种被广泛使用的item召回算法,算法详细介绍可以参考SwingTrainBatchOp组件。

该组件为Swing的流处理预测组件,输入为 SwingTrainBatchOp 输出的模型和要预测的item列。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
itemCol Item列列名 Item列列名 String
recommCol 推荐结果列名 推荐结果列名 String
initRecommCol 初始推荐列列名 初始推荐列列名 String 所选列类型为 [M_TABLE, STRING] null
k 推荐TOP数量 推荐TOP数量 Integer 10
reservedCols 算法保留列名 算法保留列 String[] null
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1
modelStreamFilePath 模型流的文件路径 模型流的文件路径 String null
modelStreamScanInterval 扫描模型路径的时间间隔 描模型路径的时间间隔,单位秒 Integer 10
modelStreamStartTime 模型流的起始时间 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) String null

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df_data = pd.DataFrame([
      ["a1", "11L", 2.2],
      ["a1", "12L", 2.0],
      ["a2", "11L", 2.0],
      ["a2", "12L", 2.0],
      ["a3", "12L", 2.0],
      ["a3", "13L", 2.0],
      ["a4", "13L", 2.0],
      ["a4", "14L", 2.0],
      ["a5", "14L", 2.0],
      ["a5", "15L", 2.0],
      ["a6", "15L", 2.0],
      ["a6", "16L", 2.0],
])

data = BatchOperator.fromDataframe(df_data, schemaStr='user string, item string, rating double')

model = SwingTrainBatchOp()\
    .setUserCol("user")\
    .setItemCol("item")\
    .linkFrom(data)

predictor = SwingRecommBatchOp()\
    .setItemCol("item")\
    .setRecommCol("prediction_result")

predictor.linkFrom(model, data).print()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.recommendation.SwingRecommBatchOp;
import com.alibaba.alink.operator.batch.recommendation.SwingTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class SwingRecommStreamOpTest {
	@Test
	public void testSwingRecommStreamOp() throws Exception {
		List <Row> df_data = Arrays.asList(
			Row.of("a1", "11L", 2.2),
			Row.of("a1", "12L", 2.0),
			Row.of("a2", "11L", 2.0),
			Row.of("a2", "12L", 2.0),
			Row.of("a3", "12L", 2.0),
			Row.of("a3", "13L", 2.0),
			Row.of("a4", "13L", 2.0),
			Row.of("a4", "14L", 2.0),
			Row.of("a5", "14L", 2.0),
			Row.of("a5", "15L", 2.0),
			Row.of("a6", "15L", 2.0),
			Row.of("a6", "16L", 2.0)
		);
		BatchOperator <?> data = new MemSourceBatchOp(df_data, "user string, item string, rating double");
		BatchOperator <?> model = new SwingTrainBatchOp()
			.setUserCol("user")
			.setItemCol("item")
			.linkFrom(data);
		BatchOperator <?> predictor = new SwingRecommBatchOp()
			.setItemCol("item")
			.setRecommCol("prediction_result");
		predictor.linkFrom(model, data).print();
	}
}

运行结果

user item rating prediction_result
a6 15L 2.0000 null
a4 13L 2.0000 null
a6 16L 2.0000 null
a5 14L 2.0000 null
a3 13L 2.0000 null
a1 12L 2.0000 {“item”:“["11L"]”,“score”:“[0.11662912368774414]”}
a2 12L 2.0000 {“item”:“["11L"]”,“score”:“[0.11662912368774414]”}
a1 11L 2.2000 {“item”:“["12L"]”,“score”:“[0.12805642187595367]”}
a3 12L 2.0000 {“item”:“["11L"]”,“score”:“[0.11662912368774414]”}
a4 14L 2.0000 null
a5 15L 2.0000 null
a2 11L 2.0000 {“item”:“["12L"]”,“score”:“[0.12805642187595367]”}