Java 类名:com.alibaba.alink.operator.batch.evaluation.EvalMultiLabelBatchOp
Python 类名:EvalMultiLabelBatchOp
对多标签分类算法的预测结果进行效果评估。
在多标签分类问题中,每个样本点 $i$ 所属标签集合记为 $L_i$,模型预测给出的预测集合记为 $P_i$;样本点总数记为 $N$。
$\frac{1}{N} \sum_{i=0}^{N-1} \frac{\left|P_i \cap L_i\right|}{\left|P_i\right|}$
$\frac{1}{N} \sum_{i=0}^{N-1} \frac{\left|L_i \cap P_i\right|}{\left|L_i\right|}$
$\frac{1}{N} \sum_{i=0}^{N - 1} \frac{\left|L_i \cap P_i \right|}{\left|L_i\right| + \left|P_i\right| - \left|L_i \cap P_i \right|}$
$\frac{1}{N \cdot \left|L\right|} \sum_{i=0}^{N - 1} \left|L_i\right| + \left|P_i\right| - 2\left|L_i \cap P_i\right|$
$\frac{1}{N}\sum_{i=0}^{N-1}I[L_i =P_i]$
这里 $I[\cdot]$ 是指示函数,内部条件满足时值为1,其他时候为0。
$\frac{1}{N} \sum_{i=0}^{N-1} 2 \frac{\left|P_i \cap L_i\right|}{\left|P_i\right| \cdot \left|L_i\right|}$
$\frac{TP}{TP + FP}=\frac{\sum_{i=0}^{N-1} \left|P_i \cap L_i\right|}{\sum_{i=0}^{N-1} \left|P_i \cap L_i\right| + \sum_{i=0}^{N-1} \left|P_i - L_i\right|}$
$\frac{TP}{TP + FN}=\frac{\sum_{i=0}^{N-1} \left|P_i \cap L_i\right|}{\sum_{i=0}^{N-1} \left|P_i \cap L_i\right| + \sum_{i=0}^{N-1} \left|L_i - P_i\right|}$
$2 \cdot \frac{TP}{2 \cdot TP + FP + FN}=2 \cdot \frac{\sum_{i=0}^{N-1} \left|P_i \cap L_i\right|}{2 \cdot \sum_{i=0}^{N-1} \left|P_i \cap L_i\right| + \sum_{i=0}^{N-1} \left|L_i - P_i\right| + \sum_{i=0}^{N-1} \left|P_i - L_i\right|}$
该组件通常接多标签分类预测算法的输出端。
使用时,需要通过参数 labelCol 指定预测标签列,参数 predictionCol 和 predictionCol 指定预测结果列。
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
| labelRankingInfo | Object列列名 | Object列列名 | String | “object” | ||
| predictionRankingInfo | Object列列名 | Object列列名 | String | “object” |
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["{\"object\":\"[0.0, 1.0]\"}", "{\"object\":\"[0.0, 2.0]\"}"],
["{\"object\":\"[0.0, 2.0]\"}", "{\"object\":\"[0.0, 1.0]\"}"],
["{\"object\":\"[]\"}", "{\"object\":\"[0.0]\"}"],
["{\"object\":\"[2.0]\"}", "{\"object\":\"[2.0]\"}"],
["{\"object\":\"[2.0, 0.0]\"}", "{\"object\":\"[2.0, 0.0]\"}"],
["{\"object\":\"[0.0, 1.0, 2.0]\"}", "{\"object\":\"[0.0, 1.0]\"}"],
["{\"object\":\"[1.0]\"}", "{\"object\":\"[1.0, 2.0]\"}"]
])
source = BatchOperator.fromDataframe(df, "pred string, label string")
evalMultiLabelBatchOp: EvalMultiLabelBatchOp = EvalMultiLabelBatchOp().setLabelCol("label").setPredictionCol("pred").linkFrom(source)
metrics = evalMultiLabelBatchOp.collectMetrics()
print(metrics)
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.evaluation.EvalMultiLabelBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.common.evaluation.MultiLabelMetrics;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class EvalMultiLabelBatchOpTest {
@Test
public void testEvalMultiLabelBatchOp() throws Exception {
List <Row> df = Arrays.asList(
Row.of("{\"object\":\"[0.0, 1.0]\"}", "{\"object\":\"[0.0, 2.0]\"}"),
Row.of("{\"object\":\"[0.0, 2.0]\"}", "{\"object\":\"[0.0, 1.0]\"}"),
Row.of("{\"object\":\"[]\"}", "{\"object\":\"[0.0]\"}"),
Row.of("{\"object\":\"[2.0]\"}", "{\"object\":\"[2.0]\"}"),
Row.of("{\"object\":\"[2.0, 0.0]\"}", "{\"object\":\"[2.0, 0.0]\"}"),
Row.of("{\"object\":\"[0.0, 1.0, 2.0]\"}", "{\"object\":\"[0.0, 1.0]\"}"),
Row.of("{\"object\":\"[1.0]\"}", "{\"object\":\"[1.0, 2.0]\"}")
);
BatchOperator <?> source = new MemSourceBatchOp(df, "pred string, label string");
EvalMultiLabelBatchOp evalMultiLabelBatchOp =
new EvalMultiLabelBatchOp().setLabelCol("label").setPredictionCol(
"pred").linkFrom(source);
MultiLabelMetrics metrics = evalMultiLabelBatchOp.collectMetrics();
System.out.println(metrics.toString());
}
}
-------------------------------- Metrics: --------------------------------
microPrecision:0.7273
microF1:0.6957
subsetAccuracy:0.2857
precision:0.6667
recall:0.6429
accuracy:0.5476
f1:0.6381
microRecall:0.6667
hammingLoss:0.3333