Java 类名:com.alibaba.alink.operator.batch.evaluation.EvalMultiLabelBatchOp
Python 类名:EvalMultiLabelBatchOp
对多标签分类算法的预测结果进行效果评估。
在多标签分类问题中,每个样本点 $i$ 所属标签集合记为 $L_i$,模型预测给出的预测集合记为 $P_i$;样本点总数记为 $N$。
$\frac{1}{N} \sum_{i=0}^{N-1} \frac{\left|P_i \cap L_i\right|}{\left|P_i\right|}$
$\frac{1}{N} \sum_{i=0}^{N-1} \frac{\left|L_i \cap P_i\right|}{\left|L_i\right|}$
$\frac{1}{N} \sum_{i=0}^{N - 1} \frac{\left|L_i \cap P_i \right|}{\left|L_i\right| + \left|P_i\right| - \left|L_i \cap P_i \right|}$
$\frac{1}{N \cdot \left|L\right|} \sum_{i=0}^{N - 1} \left|L_i\right| + \left|P_i\right| - 2\left|L_i \cap P_i\right|$
$\frac{1}{N}\sum_{i=0}^{N-1}I[L_i =P_i]$
这里 $I[\cdot]$ 是指示函数,内部条件满足时值为1,其他时候为0。
$\frac{1}{N} \sum_{i=0}^{N-1} 2 \frac{\left|P_i \cap L_i\right|}{\left|P_i\right| \cdot \left|L_i\right|}$
$\frac{TP}{TP + FP}=\frac{\sum_{i=0}^{N-1} \left|P_i \cap L_i\right|}{\sum_{i=0}^{N-1} \left|P_i \cap L_i\right| + \sum_{i=0}^{N-1} \left|P_i - L_i\right|}$
$\frac{TP}{TP + FN}=\frac{\sum_{i=0}^{N-1} \left|P_i \cap L_i\right|}{\sum_{i=0}^{N-1} \left|P_i \cap L_i\right| + \sum_{i=0}^{N-1} \left|L_i - P_i\right|}$
$2 \cdot \frac{TP}{2 \cdot TP + FP + FN}=2 \cdot \frac{\sum_{i=0}^{N-1} \left|P_i \cap L_i\right|}{2 \cdot \sum_{i=0}^{N-1} \left|P_i \cap L_i\right| + \sum_{i=0}^{N-1} \left|L_i - P_i\right| + \sum_{i=0}^{N-1} \left|P_i - L_i\right|}$
该组件通常接多标签分类预测算法的输出端。
使用时,需要通过参数 labelCol
指定预测标签列,参数 predictionCol
和 predictionCol
指定预测结果列。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
labelRankingInfo | Object列列名 | Object列列名 | String | “object” | ||
predictionRankingInfo | Object列列名 | Object列列名 | String | “object” |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["{\"object\":\"[0.0, 1.0]\"}", "{\"object\":\"[0.0, 2.0]\"}"], ["{\"object\":\"[0.0, 2.0]\"}", "{\"object\":\"[0.0, 1.0]\"}"], ["{\"object\":\"[]\"}", "{\"object\":\"[0.0]\"}"], ["{\"object\":\"[2.0]\"}", "{\"object\":\"[2.0]\"}"], ["{\"object\":\"[2.0, 0.0]\"}", "{\"object\":\"[2.0, 0.0]\"}"], ["{\"object\":\"[0.0, 1.0, 2.0]\"}", "{\"object\":\"[0.0, 1.0]\"}"], ["{\"object\":\"[1.0]\"}", "{\"object\":\"[1.0, 2.0]\"}"] ]) source = BatchOperator.fromDataframe(df, "pred string, label string") evalMultiLabelBatchOp: EvalMultiLabelBatchOp = EvalMultiLabelBatchOp().setLabelCol("label").setPredictionCol("pred").linkFrom(source) metrics = evalMultiLabelBatchOp.collectMetrics() print(metrics)
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.evaluation.EvalMultiLabelBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.common.evaluation.MultiLabelMetrics; import org.junit.Test; import java.util.Arrays; import java.util.List; public class EvalMultiLabelBatchOpTest { @Test public void testEvalMultiLabelBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("{\"object\":\"[0.0, 1.0]\"}", "{\"object\":\"[0.0, 2.0]\"}"), Row.of("{\"object\":\"[0.0, 2.0]\"}", "{\"object\":\"[0.0, 1.0]\"}"), Row.of("{\"object\":\"[]\"}", "{\"object\":\"[0.0]\"}"), Row.of("{\"object\":\"[2.0]\"}", "{\"object\":\"[2.0]\"}"), Row.of("{\"object\":\"[2.0, 0.0]\"}", "{\"object\":\"[2.0, 0.0]\"}"), Row.of("{\"object\":\"[0.0, 1.0, 2.0]\"}", "{\"object\":\"[0.0, 1.0]\"}"), Row.of("{\"object\":\"[1.0]\"}", "{\"object\":\"[1.0, 2.0]\"}") ); BatchOperator <?> source = new MemSourceBatchOp(df, "pred string, label string"); EvalMultiLabelBatchOp evalMultiLabelBatchOp = new EvalMultiLabelBatchOp().setLabelCol("label").setPredictionCol( "pred").linkFrom(source); MultiLabelMetrics metrics = evalMultiLabelBatchOp.collectMetrics(); System.out.println(metrics.toString()); } }
-------------------------------- Metrics: --------------------------------
microPrecision:0.7273
microF1:0.6957
subsetAccuracy:0.2857
precision:0.6667
recall:0.6429
accuracy:0.5476
f1:0.6381
microRecall:0.6667
hammingLoss:0.3333