Java 类名:com.alibaba.alink.operator.batch.image.ReadImageToTensorBatchOp
Python 类名:ReadImageToTensorBatchOp
将图片列转换为张量。
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| outputCol | 输出结果列列名 | 输出结果列列名,必选 | String | ✓ | ||
| relativeFilePathCol | 文件路径列 | 文件路径列 | String | ✓ | 所选列类型为 [STRING] | |
| rootFilePath | 文件路径 | 文件路径 | String | ✓ | ||
| channelFirst | Channel维度是否放在Shape的第一位 | 默认为false,参数为false时,放在Shape的最右侧,为true时,放在Shape的最左侧。 | Boolean | false | ||
| imageHeight | 图片高度 | 图片高度 | Integer | |||
| imageWidth | 图片宽度 | 图片宽度 | Integer | |||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
df_data = pd.DataFrame([
'sphx_glr_plot_scripted_tensor_transforms_001.png'
])
batch_data = BatchOperator.fromDataframe(df_data, schemaStr = 'path string')
ReadImageToTensorBatchOp()\
.setRootFilePath("http://alink-test-datatset.oss-cn-hangzhou-zmf.aliyuncs.com/images/")\
.setRelativeFilePathCol("path")\
.setOutputCol("tensor")\
.linkFrom(batch_data)\
.print()
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;
import java.util.Collections;
import java.util.List;
public class ReadImageToTensorBatchOpTest {
@Test
public void testReadImageToTensorBatchOp() throws Exception {
List <Row> data = Collections.singletonList(
Row.of("sphx_glr_plot_scripted_tensor_transforms_001.png")
);
MemSourceBatchOp memSourceBatchOp = new MemSourceBatchOp(data, "path string");
new ReadImageToTensorBatchOp()
.setRootFilePath("https://pytorch.org/vision/stable/_images/")
.setRelativeFilePathCol("path")
.setOutputCol("tensor")
.linkFrom(memSourceBatchOp)
.print();
}
}
| path | tensor |
|————————————————–+——————————–|
| sphx_glr_plot_scripted_tensor_transforms_001.png | FLOAT#250,520,4#1.0 1.0 1.0… |