Java 类名:com.alibaba.alink.pipeline.image.WriteTensorToImage
Python 类名:WriteTensorToImage
将张量列转换为图片,并写入根目录对应的相对路径列中,然后原样输出结果。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
relativeFilePathCol | 文件路径列 | 文件路径列 | String | ✓ | ||
rootFilePath | 文件路径 | 文件路径 | String | ✓ | ||
tensorCol | tensor列 | tensor列 | String | ✓ | ||
imageType | 图片类型 | 图片类型 | String | “PNG”, “JPEG” | “PNG” | |
reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
df_data = pd.DataFrame([ 'sphx_glr_plot_scripted_tensor_transforms_001.png' ]) batch_data = BatchOperator.fromDataframe(df_data, schemaStr = 'path string') readImageToTensorBatchOp = ReadImageToTensorBatchOp()\ .setRootFilePath("https://pytorch.org/vision/stable/_images/")\ .setRelativeFilePathCol("path")\ .setOutputCol("tensor") writeTensorToImageBatchOp = WriteTensorToImageBatchOp()\ .setRootFilePath("/tmp/write_tensor_to_image")\ .setTensorCol("tensor")\ .setImageType("png")\ .setRelativeFilePathCol("path") batch_data.link(readImageToTensorBatchOp).link(writeTensorToImageBatchOp).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.params.image.HasImageType.ImageType; import com.alibaba.alink.pipeline.image.WriteTensorToImage; import org.junit.Test; import java.util.Collections; import java.util.List; public class WriteTensorToImageTest { @Test public void testWriteTensorToImage() throws Exception { List <Row> data = Collections.singletonList( Row.of("sphx_glr_plot_scripted_tensor_transforms_001.png") ); MemSourceBatchOp memSourceBatchOp = new MemSourceBatchOp(data, "path string"); ReadImageToTensorBatchOp readImageToTensorBatchOp = new ReadImageToTensorBatchOp() .setRootFilePath("https://pytorch.org/vision/stable/_images/") .setRelativeFilePathCol("path") .setOutputCol("tensor"); WriteTensorToImage writeTensorToImageBatchOp = new WriteTensorToImage() .setRootFilePath("/tmp/write_tensor_to_image") .setTensorCol("tensor") .setImageType(ImageType.PNG) .setRelativeFilePathCol("path"); writeTensorToImageBatchOp.transform(memSourceBatchOp.link(readImageToTensorBatchOp)).print(); } }
可以在 /tmp/write_tensor_to_image/sphx_glr_plot_scripted_tensor_transforms_001.png 中找到 https://pytorch.org/vision/stable/_images/sphx_glr_plot_scripted_tensor_transforms_001.png
同时组件的输出结果为:
| path | tensor |
|————————————————–+——————————–|
| sphx_glr_plot_scripted_tensor_transforms_001.png | FLOAT#250,520,4#255.0 255.0… |