Java 类名:com.alibaba.alink.operator.batch.audio.ExtractMfccFeatureBatchOp
Python 类名:ExtractMfccFeatureBatchOp
用于声学特征提取,通常与ReadAudioToTensor组件一起使用,连接在其后
[1] Davis S, Mermelstein P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[J]. IEEE transactions on acoustics, speech, and signal processing, 1980, 28(4): 357-366.
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| sampleRate | 采样率 | 采样率 | Integer | ✓ | ||
| selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | ||
| hopTime | 相邻窗口时间间隔 | 相邻窗口时间间隔 | Double | 0.032 | ||
| numMfcc | mfcc参数 | mfcc参数 | Integer | 128 | ||
| outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
| windowTime | 一个窗口的时间 | 一个窗口的时间 | Double | 0.128 | ||
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
** 以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!**
dataDir = "https://alink-test-data.oss-cn-hangzhou.aliyuncs.com/audio";
df = pd.DataFrame([
["246.wav"],
["247.wav"]
])
allFiles = BatchOperator.fromDataframe(df, schemaStr='wav_file_path string')
SAMPLE_RATE = 16000
readOp = ReadAudioToTensorBatchOp().setRootFilePath(dataDir) \
.setSampleRate(SAMPLE_RATE) \
.setRelativeFilePathCol("wav_file_path") \
.setOutputCol("tensor") \
.linkFrom(allFiles)
mfccOp = ExtractMfccFeatureBatchOp() \
.setSampleRate(SAMPLE_RATE) \
.setSelectedCol("tensor") \
.linkFrom(readOp)
mfccOp.print()
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.testutil.AlinkTestBase;
import org.junit.Test;
public class ExtractMfccFeatureBatchOpTest extends AlinkTestBase {
@Test
public void testExtractMfccFeatureBatchOp() throws Exception {
String dataDir = "https://alink-test-data.oss-cn-hangzhou.aliyuncs.com/audio";
String[] allFiles = {"246.wav", "247.wav"};
int sampleRate = 16000;
String tensorName = "tensor";
String mfccName = "mfcc";
String wavFile = "wav_file_path";
BatchOperator source = new MemSourceBatchOp(allFiles, wavFile)
.link(new ReadAudioToTensorBatchOp()
.setRootFilePath(dataDir)
.setSampleRate(sampleRate)
.setRelativeFilePathCol(wavFile)
.setDuration(2)
.setOutputCol(tensorName)
)
.link(new ExtractMfccFeatureBatchOp()
.setSelectedCol(tensorName)
.setSampleRate(sampleRate)
.setWindowTime(0.128)
.setHopTime(0.032)
.setNumMfcc(26)
.setOutputCol(mfccName))
.select(new String[]{wavFile, mfccName})
.print();
}
}
| wav_file_path | mfcc |
|---|---|
| 246.wav | FLOAT#59,26,1#48.78127 -32.02646 12.432438 … |
| 247.wav | FLOAT#59,26,1#-50.62911 -13.844937 24.176699 … |