特征哈希 (FeatureHasher)
Java 类名:com.alibaba.alink.pipeline.feature.FeatureHasher
Python 类名:FeatureHasher
功能介绍
将多个特征组合成一个特征向量。
参数说明
名称 |
中文名称 |
描述 |
类型 |
是否必须? |
取值范围 |
默认值 |
outputCol |
输出结果列列名 |
输出结果列列名,必选 |
String |
✓ |
|
|
selectedCols |
选择的列名 |
计算列对应的列名列表 |
String[] |
✓ |
|
|
categoricalCols |
离散特征列名 |
离散特征列名 |
String[] |
|
|
|
numFeatures |
向量维度 |
生成向量长度 |
Integer |
|
|
262144 |
reservedCols |
算法保留列名 |
算法保留列 |
String[] |
|
|
null |
numThreads |
组件多线程线程个数 |
组件多线程线程个数 |
Integer |
|
|
1 |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df1 = pd.DataFrame([
[1.1, True, "2", "A"],
[1.1, False, "2", "B"],
[1.1, True, "1", "B"],
[2.2, True, "1", "A"]
])
inOp = BatchOperator.fromDataframe(df1, schemaStr='double double, bool boolean, number int, str string')
binarizer = FeatureHasher().setSelectedCols(["double", "bool", "number", "str"]).setOutputCol("output").setNumFeatures(200)
binarizer.transform(inOp).print()
df2 = pd.DataFrame([
[1.1, True, "2", "A"],
[1.1, False, "2", "B"],
[1.1, True, "1", "B"],
[2.2, True, "1", "A"]
])
inOp1 = BatchOperator.fromDataframe(df2, schemaStr='double double, bool boolean, number int, str string')
inOp2 = StreamOperator.fromDataframe(df2, schemaStr='double double, bool boolean, number int, str string')
hasher = FeatureHasherBatchOp().setSelectedCols(["double", "bool", "number", "str"]).setOutputCol("output").setNumFeatures(200)
hasher.linkFrom(inOp1).print()
hasher = FeatureHasherStreamOp().setSelectedCols(["double", "bool", "number", "str"]).setOutputCol("output").setNumFeatures(200)
hasher.linkFrom(inOp2).print()
StreamOperator.execute()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.feature.FeatureHasherBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.feature.FeatureHasherStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import com.alibaba.alink.pipeline.feature.FeatureHasher;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class FeatureHasherTest {
@Test
public void testFeatureHasher() throws Exception {
List <Row> df1 = Arrays.asList(
Row.of(1.1, true, 2, "A"),
Row.of(1.1, false, 2, "B"),
Row.of(1.1, true, 1, "B"),
Row.of(2.2, true, 1, "A")
);
BatchOperator <?> inOp = new MemSourceBatchOp(df1, "double double, bool boolean, number int, str string");
FeatureHasher binarizer = new FeatureHasher().setSelectedCols("double", "bool", "number", "str").setOutputCol(
"output").setNumFeatures(200);
binarizer.transform(inOp).print();
List <Row> df2 = Arrays.asList(
Row.of(1.1, true, 2, "A"),
Row.of(1.1, false, 2, "B"),
Row.of(1.1, true, 1, "B"),
Row.of(2.2, true, 1, "A")
);
BatchOperator <?> inOp1 = new MemSourceBatchOp(df2, "double double, bool boolean, number int, str string");
StreamOperator <?> inOp2 = new MemSourceStreamOp(df2, "double double, bool boolean, number int, str string");
BatchOperator <?> hasher1 = new FeatureHasherBatchOp().setSelectedCols("double", "bool", "number", "str")
.setOutputCol("output").setNumFeatures(200);
hasher1.linkFrom(inOp1).print();
StreamOperator <?> hasher2 = new FeatureHasherStreamOp().setSelectedCols("double", "bool", "number", "str")
.setOutputCol("output").setNumFeatures(200);
hasher2.linkFrom(inOp2).print();
StreamOperator.execute();
}
}
运行结果
double |
bool |
number |
str |
output |
1.1000 |
true |
2 |
A |
$200$13:2.0 38:1.1 45:1.0 195:1.0 |
1.1000 |
false |
2 |
B |
$200$13:2.0 30:1.0 38:1.1 76:1.0 |
1.1000 |
true |
1 |
B |
$200$13:1.0 38:1.1 76:1.0 195:1.0 |
2.2000 |
true |
1 |
A |
$200$13:1.0 38:2.2 45:1.0 195:1.0 |
double |
bool |
number |
str |
output |
1.1000 |
true |
2 |
A |
$200$13:2.0 38:1.1 45:1.0 195:1.0 |
1.1000 |
false |
2 |
B |
$200$13:2.0 30:1.0 38:1.1 76:1.0 |
1.1000 |
true |
1 |
B |
$200$13:1.0 38:1.1 76:1.0 195:1.0 |
2.2000 |
true |
1 |
A |
$200$13:1.0 38:2.2 45:1.0 195:1.0 |
double |
bool |
number |
str |
output |
2.2000 |
true |
1 |
A |
$200$13:1.0 38:2.2 45:1.0 195:1.0 |
1.1000 |
true |
1 |
B |
$200$13:1.0 38:1.1 76:1.0 195:1.0 |
1.1000 |
true |
2 |
A |
$200$13:2.0 38:1.1 45:1.0 195:1.0 |
1.1000 |
false |
2 |
B |
$200$13:2.0 30:1.0 38:1.1 76:1.0 |