Java 类名:com.alibaba.alink.pipeline.feature.PCA
Python 类名:PCA
主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关,作为新的综合指标。详细介绍请见维基百科链接wiki。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
k | 降维后的维度 | 降维后的维度 | Integer | ✓ | x >= 1 | |
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
calculationType | 计算类型 | 计算类型,包含“CORR”, “COV”两种。 | String | “CORR”, “COV” | “CORR” | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | false | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
selectedCols | 选中的列名数组 | 计算列对应的列名列表 | String[] | null | ||
vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [0.0,0.0,0.0], [0.1,0.2,0.1], [0.2,0.2,0.8], [9.0,9.5,9.7], [9.1,9.1,9.6], [9.2,9.3,9.9] ]) # batch source inOp = BatchOperator.fromDataframe(df, schemaStr='x1 double, x2 double, x3 double') pca = PCA().setK(2).setSelectedCols(["x1","x2","x3"]).setPredictionCol("pred") # train model = pca.fit(inOp) # batch predict model.transform(inOp).print() # stream predict inStreamOp = StreamOperator.fromDataframe(df, schemaStr='x1 double, x2 double, x3 double') model.transform(inStreamOp).print() StreamOperator.execute()
package javatest.com.alibaba.alink.pipeline.feature; import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import com.alibaba.alink.pipeline.feature.PCA; import com.alibaba.alink.pipeline.feature.PCAModel; import org.junit.Test; import java.util.Arrays; import java.util.List; public class PcaTest { @Test public void testPca() throws Exception { List <Row> df = Arrays.asList( Row.of(0.0, 0.0, 0.0), Row.of(0.1, 0.2, 0.1), Row.of(0.2, 0.2, 0.8), Row.of(9.0, 9.5, 9.7), Row.of(9.1, 9.1, 9.6), Row.of(9.2, 9.3, 9.9) ); BatchOperator <?> inOp = new MemSourceBatchOp(df, "x1 double, x2 double, x3 double"); MemSourceStreamOp inStreamOp = new MemSourceStreamOp(df, "x1 double, x2 double, x3 double"); PCA pca = new PCA() .setK(2) .setSelectedCols(new String[] {"x1", "x2", "x3"}).setPredictionCol("pred"); PCAModel model = pca.fit(inOp); model.transform(inOp).print(); model.transform(inStreamOp).print(); StreamOperator.execute(); } }
x1 | x2 | x3 | pred |
---|---|---|---|
0.0000 | 0.0000 | 0.0000 | -1.6404909810453345 -0.0251812826908675 |
0.1000 | 0.2000 | 0.1000 | -1.5946357760302712 -0.037364200387782764 |
0.2000 | 0.2000 | 0.8000 | -1.5048402139720405 0.06485201225195414 |
9.0000 | 9.5000 | 9.7000 | 1.587547449494739 -0.02506612043660217 |
9.1000 | 9.1000 | 9.6000 | 1.5421273389336387 0.0022882493013524074 |
9.2000 | 9.3000 | 9.9000 | 1.6102921826192689 0.020471341961945777 |