Java 类名:com.alibaba.alink.pipeline.outlier.IForestModelOutlier
Python 类名:IForestModelOutlier
iForest 可以识别数据中异常点,在异常检测领域有比较好的效果。算法使用 sub-sampling 方法,降低了算法的计算复杂度。
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
| featureCols | 特征列名数组 | 特征列名数组,默认全选 | String[] | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null | |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
| numTrees | 模型中树的棵数 | 模型中树的棵数 | Integer | 100 | ||
| outlierThreshold | 异常评分阈值 | 只有评分大于该阈值才会被认为是异常点 | Double | |||
| overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | false | ||
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
| subsamplingSize | 每棵树的样本采样行数 | 每棵树的样本采样行数,默认 256 ,最小 2 ,最大 100000 . | Integer | 1 <= x <= 100000 | 256 | |
| tensorCol | tensor列 | tensor列 | String | 所选列类型为 [BOOL_TENSOR, BYTE_TENSOR, DOUBLE_TENSOR, FLOAT_TENSOR, INT_TENSOR, LONG_TENSOR, STRING, STRING_TENSOR, TENSOR, UBYTE_TENSOR] | null | |
| vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null | |
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
| modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
| modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
| modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
import pandas as pd
df = pd.DataFrame([
[0.73, 0],
[0.24, 0],
[0.63, 0],
[0.55, 0],
[0.73, 0],
[0.41, 0]
])
dataOp = BatchOperator.fromDataframe(df, schemaStr='val double, label int')
modelOutlier = IForestModelOutlier()\
.setFeatureCols(["val"])\
.setOutlierThreshold(3.0)\
.setPredictionCol("pred")\
.setPredictionDetailCol("pred_detail")
evalOp = EvalOutlierBatchOp()\
.setLabelCol("label")\
.setPredictionDetailCol("pred_detail")\
.setOutlierValueStrings(["1"])
metrics = modelOutlier\
.fit(dataOp)\
.transform(dataOp)\
.link(evalOp)\
.collectMetrics()
print(metrics)
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.evaluation.EvalOutlierBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.common.evaluation.OutlierMetrics;
import com.alibaba.alink.pipeline.outlier.IForestModelOutlier;
import org.junit.Assert;
import org.junit.Test;
public class IForestModelOutlierTest {
@Test
public void test() {
BatchOperator <?> data = new MemSourceBatchOp(
new Object[][] {
{0.73, 0},
{0.24, 0},
{0.63, 0},
{0.55, 0},
{0.73, 0},
{0.41, 0},
},
new String[] {"val", "label"});
IForestModelOutlier iForestModelOutlier = new IForestModelOutlier()
.setFeatureCols("val")
.setOutlierThreshold(3.0)
.setPredictionCol("pred")
.setPredictionDetailCol("pred_detail");
EvalOutlierBatchOp eval = new EvalOutlierBatchOp()
.setLabelCol("label")
.setPredictionDetailCol("pred_detail")
.setOutlierValueStrings("1");
OutlierMetrics metrics = iForestModelOutlier
.fitAndTransform(data)
.link(eval)
.collectMetrics();
Assert.assertEquals(1.0, metrics.getAccuracy(), 10e-6);
}
}
——————————– Metrics: ——————————–
Outlier values: [1] Normal values: [0]
Auc:NaN Accuracy:1 Precision:1 Recall:0 F1:0
|Pred\Real|Outlier|Normal|
|———|——-|——|
| Outlier| 0| 0|
| Normal| 0| 6|