TF表模型预测 (TFTableModelPredictBatchOp)

Java 类名:com.alibaba.alink.operator.batch.tensorflow.TFTableModelPredictBatchOp

Python 类名:TFTableModelPredictBatchOp

功能介绍

使用 TFTableModelTrainBatchOp 或者 TF2TableModelTrainBatchOp 训练产生的模型进行预测。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
outputSchemaStr Schema Schema。格式为“colname coltype[, colname2, coltype2[, …]]”,例如 “f0 string, f1 bigint, f2 double” String
graphDefTag graph标签 graph标签 String “serve”
inputSignatureDefs 输入 SignatureDef SavedModel 模型的输入 SignatureDef 名,用逗号分隔,需要与输入列一一对应,默认与选择列相同 String[] null
intraOpParallelism Op 间并发度 Op 间并发度 Integer 4
outputSignatureDefs TF 输出 SignatureDef 名 模型的输出 SignatureDef 名,多个输出时用逗号分隔,并且与输出 Schema 一一对应,默认与输出 Schema 中的列名相同 String[] null
reservedCols 算法保留列名 算法保留列 String[] null
selectedCols 选中的列名数组 计算列对应的列名列表 String[] null
signatureDefKey signature标签 signature标签 String “serving_default”

代码示例

** 以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!**

Python 代码

import json

source = RandomTableSourceBatchOp() \
    .setNumRows(100) \
    .setNumCols(10)

colNames = source.getColNames()
source = source.select("*, case when RAND() > 0.5 then 1. else 0. end as label")
label = "label"

userParams = {
    'featureCols': json.dumps(colNames),
    'labelCol': label,
    'batch_size': 16,
    'num_epochs': 1
}

tfTableModelTrainBatchOp = TFTableModelTrainBatchOp() \
    .setUserFiles(["https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py"]) \
    .setMainScriptFile("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py") \
    .setUserParams(json.dumps(userParams)) \
    .linkFrom(source)

tfTableModelPredictBatchOp = TFTableModelPredictBatchOp() \
    .setOutputSchemaStr("logits double") \
    .setOutputSignatureDefs(["logits"]) \
    .setSignatureDefKey("predict") \
    .setSelectedCols(colNames) \
    .linkFrom(tfTableModelTrainBatchOp, source)
tfTableModelPredictBatchOp.print()

Java 代码

import com.alibaba.alink.common.utils.JsonConverter;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.RandomTableSourceBatchOp;
import com.alibaba.alink.operator.batch.tensorflow.TFTableModelPredictBatchOp;
import com.alibaba.alink.operator.batch.tensorflow.TFTableModelTrainBatchOp;
import org.junit.Test;

import java.util.HashMap;
import java.util.Map;

public class TFTableModelPredictBatchOpTest {
	@Test
	public void testTFTableModelPredictBatchOp() throws Exception {
		BatchOperator<?> source = new RandomTableSourceBatchOp()
			.setNumRows(100L)
			.setNumCols(10);

		String[] colNames = source.getColNames();
		source = source.select("*, case when RAND() > 0.5 then 1. else 0. end as label");
		String label = "label";

		Map <String, Object> userParams = new HashMap <>();
		userParams.put("featureCols", JsonConverter.toJson(colNames));
		userParams.put("labelCol", label);
		userParams.put("batch_size", 16);
		userParams.put("num_epochs", 1);

		TFTableModelTrainBatchOp tfTableModelTrainBatchOp = new TFTableModelTrainBatchOp()
			.setUserFiles(new String[] {"https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py"})
			.setMainScriptFile("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py")
			.setUserParams(JsonConverter.toJson(userParams))
			.linkFrom(source);

		TFTableModelPredictBatchOp tfTableModelPredictBatchOp = new TFTableModelPredictBatchOp()
			.setOutputSchemaStr("logits double")
			.setOutputSignatureDefs(new String[]{"logits"})
			.setSignatureDefKey("predict")
			.setSelectedCols(colNames)
			.linkFrom(tfTableModelTrainBatchOp, source);
		tfTableModelPredictBatchOp.print();
	}
}

运行结果

col0 col1 col2 col3 col4 col5 col6 col7 col8 col9 label logits
0.7310 0.2405 0.6374 0.5504 0.5975 0.3332 0.3852 0.9848 0.8792 0.9412 0 -0.4253
0.2750 0.1289 0.1466 0.0232 0.5467 0.9645 0.1045 0.6251 0.4108 0.7763 0 -0.4099
0.9907 0.4872 0.7462 0.7332 0.8173 0.8389 0.5267 0.8993 0.1339 0.0831 0 -0.3881
0.9786 0.7224 0.7150 0.1432 0.4630 0.0045 0.0715 0.3484 0.3388 0.8594 0 -0.3044
0.9715 0.8657 0.6126 0.1790 0.2176 0.8545 0.0097 0.6923 0.7713 0.7127 0 -0.4693