Java 类名:com.alibaba.alink.operator.stream.tensorflow.TFTableModelPredictStreamOp
Python 类名:TFTableModelPredictStreamOp
使用 TFTableModelTrainBatchOp
或者 TF2TableModelTrainBatchOp
训练产生的模型进行预测。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
outputSchemaStr | Schema | Schema。格式为“colname coltype[, colname2, coltype2[, …]]”,例如 “f0 string, f1 bigint, f2 double” | String | ✓ | ||
graphDefTag | graph标签 | graph标签 | String | “serve” | ||
inputSignatureDefs | 输入 SignatureDef | SavedModel 模型的输入 SignatureDef 名,用逗号分隔,需要与输入列一一对应,默认与选择列相同 | String[] | null | ||
intraOpParallelism | Op 间并发度 | Op 间并发度 | Integer | 4 | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputSignatureDefs | TF 输出 SignatureDef 名 | 模型的输出 SignatureDef 名,多个输出时用逗号分隔,并且与输出 Schema 一一对应,默认与输出 Schema 中的列名相同 | String[] | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
selectedCols | 选中的列名数组 | 计算列对应的列名列表 | String[] | null | ||
signatureDefKey | signature标签 | signature标签 | String | “serving_default” | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
** 以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!**
import json source = RandomTableSourceBatchOp() \ .setNumRows(100) \ .setNumCols(10) streamSource = RandomTableSourceStreamOp() \ .setNumCols(10) \ .setMaxRows(100) colNames = source.getColNames() source = source.select("*, case when RAND() > 0.5 then 1. else 0. end as label") label = "label" userParams = { 'featureCols': json.dumps(colNames), 'labelCol': label, 'batch_size': 16, 'num_epochs': 1 } tfTableModelTrainBatchOp = TFTableModelTrainBatchOp() \ .setUserFiles(["https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py"]) \ .setMainScriptFile("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py") \ .setUserParams(json.dumps(userParams)) \ .linkFrom(source) tfTableModelPredictStreamOp = TFTableModelPredictStreamOp(tfTableModelTrainBatchOp) \ .setOutputSchemaStr("logits double") \ .setOutputSignatureDefs(["logits"]) \ .setSignatureDefKey("predict") \ .setSelectedCols(colNames) \ .linkFrom(streamSource) tfTableModelPredictStreamOp.print() StreamOperator.execute()
import com.alibaba.alink.common.utils.JsonConverter; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.RandomTableSourceBatchOp; import com.alibaba.alink.operator.batch.tensorflow.TFTableModelTrainBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.source.RandomTableSourceStreamOp; import com.alibaba.alink.operator.stream.tensorflow.TFTableModelPredictStreamOp; import org.junit.Test; import java.util.HashMap; import java.util.Map; public class TFTableModelPredictStreamOpTest { @Test public void testTFTableModelPredictStreamOp() throws Exception { BatchOperator <?> source = new RandomTableSourceBatchOp() .setNumRows(100L) .setNumCols(10); String[] colNames = source.getColNames(); source = source.select("*, case when RAND() > 0.5 then 1. else 0. end as label"); String label = "label"; StreamOperator<?> streamSource = new RandomTableSourceStreamOp() .setNumCols(10) .setMaxRows(100L); Map <String, Object> userParams = new HashMap <>(); userParams.put("featureCols", JsonConverter.toJson(colNames)); userParams.put("labelCol", label); userParams.put("batch_size", 16); userParams.put("num_epochs", 1); TFTableModelTrainBatchOp tfTableModelTrainBatchOp = new TFTableModelTrainBatchOp() .setUserFiles(new String[] {"https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py"}) .setMainScriptFile("https://alink-release.oss-cn-beijing.aliyuncs.com/data-files/tf_dnn_train.py") .setUserParams(JsonConverter.toJson(userParams)) .linkFrom(source); TFTableModelPredictStreamOp tfTableModelPredictStreamOp = new TFTableModelPredictStreamOp(tfTableModelTrainBatchOp) .setOutputSchemaStr("logits double") .setOutputSignatureDefs(new String[] {"logits"}) .setSignatureDefKey("predict") .setSelectedCols(colNames) .linkFrom(streamSource); tfTableModelPredictStreamOp.print(); StreamOperator.execute(); } }
num | col0 | col1 | col2 | col3 | col4 | col5 | col6 | col7 | col8 | col9 | logits | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
52 | 0.8289 | 0.0595 | 0.8372 | 0.4365 | 0.5137 | 0.3043 | 0.6373 | 0.7164 | 0.3754 | 0.2490 | -0.0958 | |
34 | 0.0506 | 0.1309 | 0.0579 | 0.4603 | 0.4680 | 0.2531 | 0.7893 | 0.7719 | 0.3453 | 0.7246 | -0.1723 | |
23 | 0.1034 | 0.4412 | 0.5226 | 0.1031 | 0.5974 | 0.7483 | 0.3918 | 0.8350 | 0.4634 | 0.4486 | -0.0420 | |
60 | 0.7367 | 0.6767 | 0.8048 | 0.0243 | 0.4491 | 0.0166 | 0.2471 | 0.0429 | 0.1482 | 0.7834 | -0.0458 | |
35 | 0.5111 | 0.4983 | 0.3353 | 0.3196 | 0.8428 | 0.0538 | 0.8995 | 0.7321 | 0.5583 | 0.2186 | -0.1468 | |
… | … | … | … | … | … | … | … | … | … | … | … | … |