Java 类名:com.alibaba.alink.pipeline.dataproc.format.VectorToJson
Python 类名:VectorToJson
将数据格式从 Vector 转成 Json
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
jsonCol | JSON列名 | JSON列的列名 | String | ✓ | ||
vectorCol | 向量列名 | 向量列对应的列名 | String | ✓ | ||
handleInvalid | 解析异常处理策略 | 解析异常处理策略,可选为ERROR(抛出异常)或者SKIP(输出NULL) | String | “ERROR”, “SKIP” | “ERROR” | |
reservedCols | 算法保留列名 | 算法保留列 | String[] | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ['1', '{"f0":"1.0","f1":"2.0"}', '$3$0:1.0 1:2.0', '0:1.0,1:2.0', '1.0,2.0', 1.0, 2.0], ['2', '{"f0":"4.0","f1":"8.0"}', '$3$0:4.0 1:8.0', '0:4.0,1:8.0', '4.0,8.0', 4.0, 8.0]]) data = BatchOperator.fromDataframe(df, schemaStr="row string, json string, vec string, kv string, csv string, f0 double, f1 double") op = VectorToJson()\ .setVectorCol("vec")\ .setReservedCols(["row"])\ .setJsonCol("json")\ .transform(data) op.print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.pipeline.dataproc.format.VectorToJson; import org.junit.Test; import java.util.Arrays; import java.util.List; public class VectorToJsonTest { @Test public void testVectorToJson() throws Exception { List <Row> df = Arrays.asList( Row.of("1", "{\"f0\":\"1.0\",\"f1\":\"2.0\"}", "$3$0:1.0 1:2.0", "0:1.0,1:2.0", "1.0,2.0", 1.0, 2.0) ); BatchOperator <?> data = new MemSourceBatchOp(df, "row string, json string, vec string, kv string, csv string, f0 double, f1 double"); BatchOperator op = new VectorToJson() .setVectorCol("vec") .setReservedCols("row") .setJsonCol("json") .transform(data); op.print(); } }
row | json |
---|---|
1 | {“1”:“1.0”,“2”:“2.0”} |
2 | {“2”:“4.0”,“2”:“8.0”} |