Java 类名:com.alibaba.alink.pipeline.dataproc.StringIndexer
Python 类名:StringIndexer
StringIndexer训练组件的作用是训练一个模型用于将单列字符串映射为整数。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | ||
handleInvalid | 未知token处理策略 | 未知token处理策略。“keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常 | String | “KEEP”, “ERROR”, “SKIP” | “KEEP” | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
modelName | 模型名字 | 模型名字 | String | |||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | false | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
selectedCols | 选中的列名数组 | 计算列对应的列名列表 | String[] | null | ||
stringOrderType | Token排序方法 | Token排序方法 | String | “RANDOM”, “FREQUENCY_ASC”, “FREQUENCY_DESC”, “ALPHABET_ASC”, “ALPHABET_DESC” | “RANDOM” | |
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ["football"], ["football"], ["football"], ["basketball"], ["basketball"], ["tennis"], ]) data = BatchOperator.fromDataframe(df_data, schemaStr='f0 string') stringindexer = StringIndexer() \ .setSelectedCol("f0") \ .setOutputCol("f0_indexed") \ .setStringOrderType("frequency_asc") stringindexer.fit(data).transform(data).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.pipeline.dataproc.StringIndexer; import org.junit.Test; import java.util.Arrays; import java.util.List; public class StringIndexerTest { @Test public void testStringIndexer() throws Exception { List <Row> df_data = Arrays.asList( Row.of("football"), Row.of("football"), Row.of("football"), Row.of("basketball"), Row.of("basketball"), Row.of("tennis") ); BatchOperator <?> data = new MemSourceBatchOp(df_data, "f0 string"); StringIndexer stringindexer = new StringIndexer() .setSelectedCol("f0") .setOutputCol("f0_indexed") .setStringOrderType("frequency_asc"); stringindexer.fit(data).transform(data).print(); } }
f0 | f0_indexed |
---|---|
football | 2 |
football | 2 |
football | 2 |
basketball | 1 |
basketball | 1 |
tennis | 0 |