Java 类名:com.alibaba.alink.pipeline.dataproc.Imputer
Python 类名:Imputer
填充缺失值,生成的模型可以用于其他数据的预处理过程
支持的填充策略包含最大值,最小值,均值和指定数值,默认为均值填充
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | ||
fillValue | 填充缺失值 | 自定义的填充值。当strategy为value时,读取fillValue的值 | String | null | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | false | ||
strategy | 缺失值填充规则 | 缺失值填充的规则,支持mean,max,min或者value。选择value时,需要读取fillValue的值 | String | “MEAN”, “MIN”, “MAX”, “VALUE” | “MEAN” | |
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", 10.0, 100], ["b", -2.5, 9], ["c", 100.2, 1], ["d", -99.9, 100], ["a", 1.4, 1], ["b", -2.2, 9], ["c", 100.9, 1], [None, None, None] ]) colnames = ["col1", "col2", "col3"] selectedColNames = ["col2", "col3"] inOp = BatchOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 double') sinOp = StreamOperator.fromDataframe(df, schemaStr='col1 string, col2 double, col3 double') model = Imputer()\ .setSelectedCols(selectedColNames)\ .fit(inOp) model.transform(inOp).print() model.transform(sinOp).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.pipeline.dataproc.Imputer; import com.alibaba.alink.pipeline.dataproc.ImputerModel; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class ImputerTrainBatchOpTest { @Test public void testImputerTrainBatchOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("a", 10.0, 100), Row.of("b", -2.5, 9), Row.of("c", 100.2, 1), Row.of("d", -99.9, 100), Row.of("a", 1.4, 1), Row.of("b", -2.2, 9), Row.of("c", 100.9, 1), Row.of(null, null, null) ); String[] selectedColNames = new String[] {"col2", "col3"}; BatchOperator <?> inOp = new MemSourceBatchOp(df_data, "col1 string, col2 double, col3 int"); ImputerModel imputerModel = new Imputer() .setSelectedCols(selectedColNames) .fit(inOp); imputerModel.transform(inOp).print(); StreamOperator <?> sinOp = new MemSourceStreamOp(df_data, "col1 string, col2 double, col3 int"); imputerModel.transform(inOp).print(); StreamOperator.execute(); } }
col1 | col2 | col3 |
---|---|---|
a | 10.000000 | 100 |
b | -2.500000 | 9 |
c | 100.200000 | 1 |
d | -99.900000 | 100 |
a | 1.400000 | 1 |
b | -2.200000 | 9 |
c | 100.900000 | 1 |
null | 15.414286 | 31 |