Java 类名:com.alibaba.alink.operator.stream.nlp.Word2VecPredictStreamOp
Python 类名:Word2VecPredictStreamOp
Word2Vec是Google在2013年开源的一个将词表转为向量的算法,其利用神经网络,可以通过训练,将词映射到K维度空间向量,甚至对于表示词的向量进行操作还能和语义相对应,由于其简单和高效引起了很多人的关注。
Word2Vec的工具包相关链接:https://code.google.com/p/word2vec/
预测是根据word2vec的结果和文档的分词结果,将文档转成向量,向量维数保持与词的维数一致,同时每个维度通过对文档中的词求平均或者最大或者最小取得。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
predMethod | 向量组合方法 | 预测文档向量时,需要用到的方法。支持三种方法:平均(avg),最小(min)和最大(max),默认值为平均 | String | “AVG”, “SUM”, “MIN”, “MAX” | “AVG” | |
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
wordDelimiter | 单词分隔符 | 单词之间的分隔符 | String | “ ” | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["A B C"] ]) inOp1 = BatchOperator.fromDataframe(df, schemaStr='tokens string') inOp2 = StreamOperator.fromDataframe(df, schemaStr='tokens string') train = Word2VecTrainBatchOp().setSelectedCol("tokens").setMinCount(1).setVectorSize(4).linkFrom(inOp1) predictBatch = Word2VecPredictBatchOp().setSelectedCol("tokens").linkFrom(train, inOp1) train.lazyPrint(-1) predictBatch.print() predictStream = Word2VecPredictStreamOp(train).setSelectedCol("tokens").linkFrom(inOp2) predictStream.print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.nlp.Word2VecPredictBatchOp; import com.alibaba.alink.operator.batch.nlp.Word2VecTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.nlp.Word2VecPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class Word2VecPredictStreamOpTest { @Test public void testWord2VecPredictStreamOp() throws Exception { List <Row> df = Arrays.asList( Row.of("A B C") ); BatchOperator <?> inOp1 = new MemSourceBatchOp(df, "tokens string"); StreamOperator <?> inOp2 = new MemSourceStreamOp(df, "tokens string"); BatchOperator <?> train = new Word2VecTrainBatchOp().setSelectedCol("tokens").setMinCount(1).setVectorSize(4) .linkFrom(inOp1); BatchOperator <?> predictBatch = new Word2VecPredictBatchOp().setSelectedCol("tokens").linkFrom(train, inOp1); train.lazyPrint(-1); predictBatch.print(); StreamOperator <?> predictStream = new Word2VecPredictStreamOp(train).setSelectedCol("tokens").linkFrom(inOp2); predictStream.print(); StreamOperator.execute(); } }
word | vec |
---|---|
C | 0.7310850737482761 0.8314776897399809 0.24063859340592783 0.60638116694726 |
B | 0.7307931808428079 0.1004040760012987 0.4100461085450439 0.40737703647812473 |
A | 0.7310290783979052 0.2932944253292183 0.9013769146172511 0.004089307575571348 |
tokens |
---|
0.7309691109963297 0.40839206369016595 0.5173538721894075 0.3392825036669853 |
tokens |
---|
0.7309699600889779 0.40844142102496717 0.5173214287840606 0.3393146570468293 |