Java 类名:com.alibaba.alink.operator.stream.nlp.DocCountVectorizerPredictStreamOp
Python 类名:DocCountVectorizerPredictStreamOp
根据文本中词语的特征信息,将每条文本转化为稀疏向量。
该组件是预测组件,需要配合训练组件 DocCountVectorizerTrainBatchOp 使用。
df = pd.DataFrame([ [0, u'二手旧书:医学电磁成像'], [1, u'二手美国文学选读( 下册 )李宜燮南开大学出版社 9787310003969'], [2, u'二手正版图解象棋入门/谢恩思主编/华龄出版社'], [3, u'二手中国糖尿病文献索引'], [4, u'二手郁达夫文集( 国内版 )全十二册馆藏书'] ]) inOp1 = BatchOperator.fromDataframe(df, schemaStr='id int, text string') segment = SegmentBatchOp().setSelectedCol("text").linkFrom(inOp1) train = DocCountVectorizerTrainBatchOp().setSelectedCol("text").linkFrom(segment) inOp2 = StreamOperator.fromDataframe(df, schemaStr='id int, text string') segment2 = SegmentStreamOp().setSelectedCol("text").linkFrom(inOp2) predictStream = DocCountVectorizerPredictStreamOp(train).setSelectedCol("text").linkFrom(segment2) predictStream.print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.nlp.DocCountVectorizerPredictBatchOp; import com.alibaba.alink.operator.batch.nlp.DocCountVectorizerTrainBatchOp; import com.alibaba.alink.operator.batch.nlp.SegmentBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class DocCountVectorizerPredictStreamOpTest { @Test public void testDocCountVectorizerPredictStreamOp() throws Exception { List <Row> df = Arrays.asList( Row.of(0, "二手旧书:医学电磁成像"), Row.of(1, "二手美国文学选读( 下册 )李宜燮南开大学出版社 9787310003969"), Row.of(2, "二手正版图解象棋入门/谢恩思主编/华龄出版社"), Row.of(3, "二手中国糖尿病文献索引"), Row.of(4, "二手郁达夫文集( 国内版 )全十二册馆藏书") ); BatchOperator <?> inOp1 = new MemSourceBatchOp(df, "id int, text string"); BatchOperator <?> segment = new SegmentBatchOp().setSelectedCol("text").linkFrom(inOp1); BatchOperator <?> train = new DocCountVectorizerTrainBatchOp().setSelectedCol("text").linkFrom(segment); StreamOperator <?> inOp2 = new MemSourceStreamOp(df, "id int, text string"); StreamOperator <?> segment2 = new SegmentStreamOp().setSelectedCol("text").linkFrom(inOp2); StreamOperator <?> predictStream = new DocCountVectorizerPredictStreamOp(train).setSelectedCol("text").linkFrom( segment2); predictStream.print(); StreamOperator.execute(); } }
id | text |
---|---|
0 | $37$10:1.0 14:1.0 18:1.0 25:1.0 29:1.0 34:1.0 |
4 | $37$0:1.0 1:1.0 2:1.0 3:1.0 11:1.0 15:1.0 21:1.0 24:1.0 27:1.0 29:1.0 30:1.0 |
3 | $37$8:1.0 9:1.0 16:1.0 29:1.0 32:1.0 |
2 | $37$5:1.0 6:1.0 12:1.0 19:1.0 20:1.0 23:1.0 26:1.0 28:1.0 29:1.0 31:1.0 36:2.0 |
1 | $37$0:1.0 1:1.0 4:1.0 7:1.0 13:1.0 17:1.0 22:1.0 26:1.0 29:1.0 33:1.0 35:1.0 |