文本特征生成训练 (DocCountVectorizerTrainBatchOp)

Java 类名:com.alibaba.alink.operator.batch.nlp.DocCountVectorizerTrainBatchOp

Python 类名:DocCountVectorizerTrainBatchOp

功能介绍

根据文本中词语的特征信息,将每条文本转化为稀疏向量。

使用方式

该组件是训练组件,需要配合预测组件 DocCountVectorizerPredictBatch/StreamOp 使用。

文本内容列(SelectedCol)中的内容用于统计词语的统计信息,需要是用空格分隔的词语。

将文本转换为稀疏向量时,每个唯一的词语将对应向量中的一个唯一的索引值。 而向量中对应索引的值表示这个词语在文本中的特征信息,可以通过参数 featureType 来选择不同的特征。

在转换时,所使用的词语集合还可以通过参数来进行筛选:

  • maxDF/minDF:根据包含词语的文本次数(DF)进行筛选(当设置值在[0,1)区间时,表示占总文本数的比例);
  • minTF:仅在预测单条文本时起作用,根据词语在当前文本中的出现的次数进行筛选(当设置值在[0,1)区间时,表示占当前文本总次数的比例);
  • vocabSize:根据词语在所有文本中出现的总次数排序,只使用前 vocabSize 个词语。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
selectedCol 选中的列名 计算列对应的列名 String 所选列类型为 [STRING]
featureType 特征类型 生成特征向量的类型,支持IDF/WORD_COUNT/TF_IDF/Binary/TF String “IDF”, “WORD_COUNT”, “TF_IDF”, “BINARY”, “TF” “WORD_COUNT”
maxDF 最大词频 如果一个词出现的文档次数大于maxDF, 这个词不会被包含在字典中。maxDF可以是具体的词频也可以是整体词频的比例,如果minDF在[0,1)区间,会被认为是比例。 Double 1.7976931348623157E308
minDF 最小文档词频 如果一个词出现的文档次数小于minDF, 这个词不会被包含在字典中。minTF可以是具体的词频也可以是整体词频的比例,如果minDF在[0,1)区间,会被认为是比例。 Double 1.0
minTF 最低词频 最低词频,如果词频小于minTF,这个词会被忽略掉。minTF可以是具体的词频也可以是整体词频的比例,如果minTF在[0,1)区间,会被认为是比例。 Double 1.0
vocabSize 字典库大小 字典库大小,如果总词数目大于这个值,那个文档频率低的词会被过滤掉。 Integer 262144

代码示例

Python 代码

df = pd.DataFrame([
    [0, u'二手旧书:医学电磁成像'],
    [1, u'二手美国文学选读( 下册 )李宜燮南开大学出版社 9787310003969'],
    [2, u'二手正版图解象棋入门/谢恩思主编/华龄出版社'],
    [3, u'二手中国糖尿病文献索引'],
    [4, u'二手郁达夫文集( 国内版 )全十二册馆藏书']
])

inOp1 = BatchOperator.fromDataframe(df, schemaStr='id int, text string')

segment = SegmentBatchOp().setSelectedCol("text").linkFrom(inOp1)
train = DocCountVectorizerTrainBatchOp().setSelectedCol("text").linkFrom(segment)
predictBatch = DocCountVectorizerPredictBatchOp().setSelectedCol("text").linkFrom(train, segment)
train.lazyPrint(-1)
predictBatch.print()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.nlp.DocCountVectorizerPredictBatchOp;
import com.alibaba.alink.operator.batch.nlp.DocCountVectorizerTrainBatchOp;
import com.alibaba.alink.operator.batch.nlp.SegmentBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class DocCountVectorizerTrainBatchOpTest {
	@Test
	public void testDocCountVectorizerTrainBatchOp() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of(0, "二手旧书:医学电磁成像"),
			Row.of(1, "二手美国文学选读( 下册 )李宜燮南开大学出版社 9787310003969"),
			Row.of(2, "二手正版图解象棋入门/谢恩思主编/华龄出版社"),
			Row.of(3, "二手中国糖尿病文献索引"),
			Row.of(4, "二手郁达夫文集( 国内版 )全十二册馆藏书")
		);
		BatchOperator <?> inOp1 = new MemSourceBatchOp(df, "id int, text string");
		BatchOperator <?> segment = new SegmentBatchOp().setSelectedCol("text").linkFrom(inOp1);
		BatchOperator <?> train = new DocCountVectorizerTrainBatchOp().setSelectedCol("text").linkFrom(segment);
		BatchOperator <?> predictBatch = new DocCountVectorizerPredictBatchOp().setSelectedCol("text").linkFrom(train,
			segment);
		train.lazyPrint(-1);
		predictBatch.print();
	}
}

运行结果

模型数据

model_id model_info
0 {“minTF”:“1.0”,“featureType”:“"WORD_COUNT"”}
1048576 {“f0”:“)”,“f1”:0.6931471805599453,“f2”:0}
2097152 {“f0”:“(”,“f1”:0.6931471805599453,“f2”:1}
3145728 {“f0”:“馆藏”,“f1”:1.0986122886681098,“f2”:2}
4194304 {“f0”:“郁达夫”,“f1”:1.0986122886681098,“f2”:3}
5242880 {“f0”:“选读”,“f1”:1.0986122886681098,“f2”:4}
6291456 {“f0”:“象棋”,“f1”:1.0986122886681098,“f2”:5}
7340032 {“f0”:“谢恩”,“f1”:1.0986122886681098,“f2”:6}
8388608 {“f0”:“美国”,“f1”:1.0986122886681098,“f2”:7}
9437184 {“f0”:“索引”,“f1”:1.0986122886681098,“f2”:8}
10485760 {“f0”:“糖尿病”,“f1”:1.0986122886681098,“f2”:9}
11534336 {“f0”:“电磁”,“f1”:1.0986122886681098,“f2”:10}
12582912 {“f0”:“版”,“f1”:1.0986122886681098,“f2”:11}
13631488 {“f0”:“正版”,“f1”:1.0986122886681098,“f2”:12}
14680064 {“f0”:“李宜燮”,“f1”:1.0986122886681098,“f2”:13}
15728640 {“f0”:“旧书”,“f1”:1.0986122886681098,“f2”:14}
16777216 {“f0”:“文集”,“f1”:1.0986122886681098,“f2”:15}
17825792 {“f0”:“文献”,“f1”:1.0986122886681098,“f2”:16}
18874368 {“f0”:“文学”,“f1”:1.0986122886681098,“f2”:17}
19922944 {“f0”:“成像”,“f1”:1.0986122886681098,“f2”:18}
20971520 {“f0”:“思”,“f1”:1.0986122886681098,“f2”:19}
22020096 {“f0”:“图解”,“f1”:1.0986122886681098,“f2”:20}
23068672 {“f0”:“国内”,“f1”:1.0986122886681098,“f2”:21}
24117248 {“f0”:“南开大学”,“f1”:1.0986122886681098,“f2”:22}
25165824 {“f0”:“华龄”,“f1”:1.0986122886681098,“f2”:23}
26214400 {“f0”:“十二册”,“f1”:1.0986122886681098,“f2”:24}
27262976 {“f0”:“医学”,“f1”:1.0986122886681098,“f2”:25}
28311552 {“f0”:“出版社”,“f1”:0.6931471805599453,“f2”:26}
29360128 {“f0”:“全”,“f1”:1.0986122886681098,“f2”:27}
30408704 {“f0”:“入门”,“f1”:1.0986122886681098,“f2”:28}
31457280 {“f0”:“二手”,“f1”:0.0,“f2”:29}
32505856 {“f0”:“书”,“f1”:1.0986122886681098,“f2”:30}
33554432 {“f0”:“主编”,“f1”:1.0986122886681098,“f2”:31}
34603008 {“f0”:“中国”,“f1”:1.0986122886681098,“f2”:32}
35651584 {“f0”:“下册”,“f1”:1.0986122886681098,“f2”:33}
36700160 {“f0”:“:”,“f1”:1.0986122886681098,“f2”:34}
37748736 {“f0”:“9787310003969”,“f1”:1.0986122886681098,“f2”:35}
38797312 {“f0”:“/”,“f1”:1.0986122886681098,“f2”:36}

批预测结果

id text
0 $37$10:1.0 14:1.0 18:1.0 25:1.0 29:1.0 34:1.0
1 $37$0:1.0 1:1.0 4:1.0 7:1.0 13:1.0 17:1.0 22:1.0 26:1.0 29:1.0 33:1.0 35:1.0
2 $37$5:1.0 6:1.0 12:1.0 19:1.0 20:1.0 23:1.0 26:1.0 28:1.0 29:1.0 31:1.0 36:2.0
3 $37$8:1.0 9:1.0 16:1.0 29:1.0 32:1.0
4 $37$0:1.0 1:1.0 2:1.0 3:1.0 11:1.0 15:1.0 21:1.0 24:1.0 27:1.0 29:1.0 30:1.0