该文档涉及的组件

SQL操作:As (AsBatchOp)

Java 类名:com.alibaba.alink.operator.batch.sql.AsBatchOp

Python 类名:AsBatchOp

功能介绍

对批式数据进行sql的AS操作。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
clause 运算语句 运算语句 String

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
    ['Ohio', 2000, 1.5],
    ['Ohio', 2001, 1.7],
    ['Ohio', 2002, 3.6],
    ['Nevada', 2001, 2.4],
    ['Nevada', 2002, 2.9],
    ['Nevada', 2003, 3.2]
])

batch_data = BatchOperator.fromDataframe(df, schemaStr='f1 string, f2 bigint, f3 double')
op = AsBatchOp().setClause("ff1,ff2,ff3")
batch_data = batch_data.link(op)
batch_data.print()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.batch.sql.AsBatchOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class AsBatchOpTest {
	@Test
	public void testAsBatchOp() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of("Ohio", 2000, 1.5),
			Row.of("Ohio", 2001, 1.7),
			Row.of("Ohio", 2002, 3.6),
			Row.of("Nevada", 2001, 2.4),
			Row.of("Nevada", 2002, 2.9),
			Row.of("Nevada", 2003, 3.2)
		);
		BatchOperator <?> batch_data = new MemSourceBatchOp(df, "f1 string, f2 int, f3 double");
		BatchOperator <?> op = new AsBatchOp().setClause("ff1,ff2,ff3");
		batch_data = batch_data.link(op);
		batch_data.print();
	}
}

运行结果

ff1 ff2 ff3
Ohio 2000 1.5000
Ohio 2001 1.7000
Ohio 2002 3.6000
Nevada 2001 2.4000
Nevada 2002 2.9000
Nevada 2003 3.2000