Java 类名:com.alibaba.alink.operator.batch.sql.OrderByBatchOp
Python 类名:OrderByBatchOp
对批式数据进行sql的ORDER BY操作。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
clause | 运算语句 | 运算语句 | String | ✓ | ||
fetch | fetch的record数目 | fetch的record数目 | Integer | |||
limit | record的limit数 | record的limit数 | Integer | |||
offset | fetch的偏移值 | fetch的偏移值 | Integer | |||
order | 排序方法 | 排序方法 | String | “asc” |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ['Ohio', 2000, 1.5], ['Ohio', 2000, 1.5], ['Ohio', 2002, 3.6], ['Nevada', 2001, 2.4], ['Nevada', 2002, 2.9], ['Nevada', 2003, 3.2] ]) batch_data = BatchOperator.fromDataframe(df, schemaStr='f1 string, f2 bigint, f3 double') batch_data.link(OrderByBatchOp().setClause("f2")).print()
import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.batch.sql.OrderByBatchOp; import org.junit.Test; public class OrderByBatchOpTest { @Test public void testOrderByBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("Ohio", 2000, 1.5), Row.of("Ohio", 2000, 1.5), Row.of("Ohio", 2002, 3.6), Row.of("Nevada", 2001, 2.4), Row.of("Nevada", 2002, 2.9), Row.of("Nevada", 2003, 3.2) ); BatchOperator <?> data = new MemSourceBatchOp(df, "f1 string, f2 int, f3 double"); data.link(new OrderByBatchOp().setClause("f2")).print(); } }
f1 | f2 | f3 |
---|---|---|
Ohio | 2000 | 1.5000 |
Ohio | 2000 | 1.5000 |
Nevada | 2001 | 2.4000 |
Ohio | 2002 | 3.6000 |
Nevada | 2002 | 2.9000 |
Nevada | 2003 | 3.2000 |