Auto ARIMA (AutoArimaStreamOp)

Java 类名:com.alibaba.alink.operator.stream.timeseries.AutoArimaStreamOp

Python 类名:AutoArimaStreamOp

功能介绍

给定分组,对每一组的数据进行AutoArima时间序列预测,给出下一时间段的结果。

算法原理

Arima全称为自回归积分滑动平均模型(Autoregressive Integrated Moving Average Model,简记ARIMA),是由博克思(Box)和詹金斯(Jenkins)于70年代初提出一著名时间序列预测方法,所以又称为box-jenkins模型、博克思-詹金斯法.

Arima 详细介绍请见链接 https://en.wikipedia.org/wiki/Autoregressive_integrated_moving_average

AutoArima是只需要指定MaxOrder, 不需要指定p/d/q, 对每个分组分别计算出最优的参数,给出预测结果。

使用方式

参考文档 https://www.yuque.com/pinshu/alink_guide/xbp5ky

参数说明

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

import time, datetime
import numpy as np
import pandas as pd

data = pd.DataFrame([
			[1,  datetime.datetime.fromtimestamp(1001), 10.0],
			[1,  datetime.datetime.fromtimestamp(1002), 11.0],
			[1,  datetime.datetime.fromtimestamp(1003), 12.0],
			[1,  datetime.datetime.fromtimestamp(1004), 13.0],
			[1,  datetime.datetime.fromtimestamp(1005), 14.0],
			[1,  datetime.datetime.fromtimestamp(1006), 15.0],
			[1,  datetime.datetime.fromtimestamp(1007), 16.0],
			[1,  datetime.datetime.fromtimestamp(1008), 17.0],
			[1,  datetime.datetime.fromtimestamp(1009), 18.0],
			[1,  datetime.datetime.fromtimestamp(1010), 19.0]
])

source = dataframeToOperator(data, schemaStr='id int, ts timestamp, val double', op_type='stream')

source.link(
			OverCountWindowStreamOp()
				.setGroupCols(["id"])
				.setTimeCol("ts")
				.setPrecedingRows(5)
				.setClause("mtable_agg_preceding(ts, val) as data")
		).link(
			AutoArimaStreamOp()
				.setValueCol("data")
				.setPredictionCol("predict")
                .setMaxOrder(1)
				.setPredictNum(4)
		).link(
			LookupValueInTimeSeriesStreamOp()
				.setTimeCol("ts")
				.setTimeSeriesCol("predict")
				.setOutputCol("out")
		).print()

StreamOperator.execute()

Java 代码

package com.alibaba.alink.operator.stream.timeseries;

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.feature.OverCountWindowStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import com.alibaba.alink.testutil.AlinkTestBase;
import org.junit.Test;

import java.sql.Timestamp;
import java.util.Arrays;
import java.util.List;

public class AutoArimaStreamOpTest extends AlinkTestBase {

	@Test
	public void test() throws Exception {
		List <Row> mTableData = Arrays.asList(
			Row.of(1, new Timestamp(1), 10.0),
			Row.of(1, new Timestamp(2), 11.0),
			Row.of(1, new Timestamp(3), 12.0),
			Row.of(1, new Timestamp(4), 13.0),
			Row.of(1, new Timestamp(5), 14.0),
			Row.of(1, new Timestamp(6), 15.0),
			Row.of(1, new Timestamp(7), 16.0),
			Row.of(1, new Timestamp(8), 17.0),
			Row.of(1, new Timestamp(9), 18.0),
			Row.of(1, new Timestamp(10), 19.0)
		);

		MemSourceStreamOp source = new MemSourceStreamOp(mTableData, new String[] {"id", "ts", "val"});

		source.link(
			new OverCountWindowStreamOp()
				.setGroupCols("id")
				.setTimeCol("ts")
				.setPrecedingRows(5)
				.setClause("mtable_agg(ts, val) as data")
		).link(
			new AutoArimaStreamOp()
				.setGroupCol("id")
				.setValueCol("data")
				.setPredictionCol("predict")
				.setPredictNum(12)
		).link(
			new LookupValueInTimeSeriesStreamOp()
				.setTimeCol("ts")
				.setTimeSeriesCol("predict")
				.setOutputCol("out")
		).print();

		StreamOperator.execute();
	}
}

运行结果

id ts val data predict out
1 1970-01-01 08:00:00.001 10.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.001”],“val”:[10.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null null
1 1970-01-01 08:00:00.002 11.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.001”,“1970-01-01 08:00:00.002”],“val”:[10.0,11.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} {“data”:{“ts”:[“1970-01-01 08:00:00.003”,“1970-01-01 08:00:00.004”,“1970-01-01 08:00:00.005”,“1970-01-01 08:00:00.006”,“1970-01-01 08:00:00.007”,“1970-01-01 08:00:00.008”,“1970-01-01 08:00:00.009”,“1970-01-01 08:00:00.01”,“1970-01-01 08:00:00.011”,“1970-01-01 08:00:00.012”,“1970-01-01 08:00:00.013”,“1970-01-01 08:00:00.014”],“val”:[11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0,11.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null
1 1970-01-01 08:00:00.003 12.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.001”,“1970-01-01 08:00:00.002”,“1970-01-01 08:00:00.003”],“val”:[10.0,11.0,12.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null null
1 1970-01-01 08:00:00.004 13.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.001”,“1970-01-01 08:00:00.002”,“1970-01-01 08:00:00.003”,“1970-01-01 08:00:00.004”],“val”:[10.0,11.0,12.0,13.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null null
1 1970-01-01 08:00:00.005 14.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.001”,“1970-01-01 08:00:00.002”,“1970-01-01 08:00:00.003”,“1970-01-01 08:00:00.004”,“1970-01-01 08:00:00.005”],“val”:[10.0,11.0,12.0,13.0,14.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null null
1 1970-01-01 08:00:00.006 15.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.001”,“1970-01-01 08:00:00.002”,“1970-01-01 08:00:00.003”,“1970-01-01 08:00:00.004”,“1970-01-01 08:00:00.005”,“1970-01-01 08:00:00.006”],“val”:[10.0,11.0,12.0,13.0,14.0,15.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null null
1 1970-01-01 08:00:00.007 16.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.002”,“1970-01-01 08:00:00.003”,“1970-01-01 08:00:00.004”,“1970-01-01 08:00:00.005”,“1970-01-01 08:00:00.006”,“1970-01-01 08:00:00.007”],“val”:[11.0,12.0,13.0,14.0,15.0,16.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null null
1 1970-01-01 08:00:00.008 17.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.003”,“1970-01-01 08:00:00.004”,“1970-01-01 08:00:00.005”,“1970-01-01 08:00:00.006”,“1970-01-01 08:00:00.007”,“1970-01-01 08:00:00.008”],“val”:[12.0,13.0,14.0,15.0,16.0,17.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null null
1 1970-01-01 08:00:00.009 18.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.004”,“1970-01-01 08:00:00.005”,“1970-01-01 08:00:00.006”,“1970-01-01 08:00:00.007”,“1970-01-01 08:00:00.008”,“1970-01-01 08:00:00.009”],“val”:[13.0,14.0,15.0,16.0,17.0,18.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null null
1 1970-01-01 08:00:00.01 19.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.005”,“1970-01-01 08:00:00.006”,“1970-01-01 08:00:00.007”,“1970-01-01 08:00:00.008”,“1970-01-01 08:00:00.009”,“1970-01-01 08:00:00.01”],“val”:[14.0,15.0,16.0,17.0,18.0,19.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null null