Java 类名:com.alibaba.alink.operator.stream.timeseries.LSTNetPredictStreamOp
Python 类名:LSTNetPredictStreamOp
使用 LSTNet 进行时间序列训练和预测。
参考文档 https://www.yuque.com/pinshu/alink_guide/xbp5ky
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
valueCol | value列,类型为MTable | value列,类型为MTable | String | ✓ | 所选列类型为 [M_TABLE, STRING] | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
predictNum | 预测条数 | 预测条数 | Integer | 1 | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) import time, datetime import numpy as np import pandas as pd data = pd.DataFrame([ [0, datetime.datetime.fromisoformat("2021-11-01 00:00:00"), 100.0], [0, datetime.datetime.fromisoformat("2021-11-02 00:00:00"), 200.0], [0, datetime.datetime.fromisoformat("2021-11-03 00:00:00"), 300.0], [0, datetime.datetime.fromisoformat("2021-11-04 00:00:00"), 400.0], [0, datetime.datetime.fromisoformat("2021-11-06 00:00:00"), 500.0], [0, datetime.datetime.fromisoformat("2021-11-07 00:00:00"), 600.0], [0, datetime.datetime.fromisoformat("2021-11-08 00:00:00"), 700.0], [0, datetime.datetime.fromisoformat("2021-11-09 00:00:00"), 800.0], [0, datetime.datetime.fromisoformat("2021-11-10 00:00:00"), 900.0], [0, datetime.datetime.fromisoformat("2021-11-11 00:00:00"), 800.0], [0, datetime.datetime.fromisoformat("2021-11-12 00:00:00"), 700.0], [0, datetime.datetime.fromisoformat("2021-11-13 00:00:00"), 600.0], [0, datetime.datetime.fromisoformat("2021-11-14 00:00:00"), 500.0], [0, datetime.datetime.fromisoformat("2021-11-15 00:00:00"), 400.0], [0, datetime.datetime.fromisoformat("2021-11-16 00:00:00"), 300.0], [0, datetime.datetime.fromisoformat("2021-11-17 00:00:00"), 200.0], [0, datetime.datetime.fromisoformat("2021-11-18 00:00:00"), 100.0], [0, datetime.datetime.fromisoformat("2021-11-19 00:00:00"), 200.0], [0, datetime.datetime.fromisoformat("2021-11-20 00:00:00"), 300.0], [0, datetime.datetime.fromisoformat("2021-11-21 00:00:00"), 400.0], [0, datetime.datetime.fromisoformat("2021-11-22 00:00:00"), 500.0], [0, datetime.datetime.fromisoformat("2021-11-23 00:00:00"), 600.0], [0, datetime.datetime.fromisoformat("2021-11-24 00:00:00"), 700.0], [0, datetime.datetime.fromisoformat("2021-11-25 00:00:00"), 800.0], [0, datetime.datetime.fromisoformat("2021-11-26 00:00:00"), 900.0], [0, datetime.datetime.fromisoformat("2021-11-27 00:00:00"), 800.0], [0, datetime.datetime.fromisoformat("2021-11-28 00:00:00"), 700.0], [0, datetime.datetime.fromisoformat("2021-11-29 00:00:00"), 600.0], [0, datetime.datetime.fromisoformat("2021-11-30 00:00:00"), 500.0], [0, datetime.datetime.fromisoformat("2021-12-01 00:00:00"), 400.0], [0, datetime.datetime.fromisoformat("2021-12-02 00:00:00"), 300.0], [0, datetime.datetime.fromisoformat("2021-12-03 00:00:00"), 200.0] ]) batch_source = dataframeToOperator(data, schemaStr='id int, ts timestamp, series double', op_type='batch') stream_source = dataframeToOperator(data, schemaStr='id int, ts timestamp, series double', op_type='stream') lstNetTrainBatchOp = LSTNetTrainBatchOp()\ .setTimeCol("ts")\ .setSelectedCol("series")\ .setNumEpochs(10)\ .setWindow(24)\ .setHorizon(1)\ .linkFrom(batch_source) overCountWindowStreamOp = OverCountWindowStreamOp()\ .setClause("MTABLE_AGG_PRECEDING(ts, series) as mtable_agg_series")\ .setTimeCol("ts")\ .setPrecedingRows(24) lstNetPredictStreamOp = LSTNetPredictStreamOp(lstNetTrainBatchOp)\ .setPredictNum(1)\ .setPredictionCol("pred")\ .setReservedCols([])\ .setValueCol("mtable_agg_series") lstNetPredictStreamOp\ .linkFrom( overCountWindowStreamOp\ .linkFrom(stream_source)\ .filter("ts = TO_TIMESTAMP('2021-12-03 00:00:00')") )\ .print(); StreamOperator.execute();
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.feature.OverCountWindowStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import com.alibaba.alink.operator.stream.timeseries.LSTNetPredictStreamOp; import org.junit.Test; import java.sql.Timestamp; import java.util.Arrays; import java.util.List; public class LSTNetPredictStreamOpTest { @Test public void testLSTNetTrainBatchOp() throws Exception { BatchOperator.setParallelism(1); List <Row> data = Arrays.asList( Row.of(0, Timestamp.valueOf("2021-11-01 00:00:00"), 100.0), Row.of(0, Timestamp.valueOf("2021-11-02 00:00:00"), 200.0), Row.of(0, Timestamp.valueOf("2021-11-03 00:00:00"), 300.0), Row.of(0, Timestamp.valueOf("2021-11-04 00:00:00"), 400.0), Row.of(0, Timestamp.valueOf("2021-11-06 00:00:00"), 500.0), Row.of(0, Timestamp.valueOf("2021-11-07 00:00:00"), 600.0), Row.of(0, Timestamp.valueOf("2021-11-08 00:00:00"), 700.0), Row.of(0, Timestamp.valueOf("2021-11-09 00:00:00"), 800.0), Row.of(0, Timestamp.valueOf("2021-11-10 00:00:00"), 900.0), Row.of(0, Timestamp.valueOf("2021-11-11 00:00:00"), 800.0), Row.of(0, Timestamp.valueOf("2021-11-12 00:00:00"), 700.0), Row.of(0, Timestamp.valueOf("2021-11-13 00:00:00"), 600.0), Row.of(0, Timestamp.valueOf("2021-11-14 00:00:00"), 500.0), Row.of(0, Timestamp.valueOf("2021-11-15 00:00:00"), 400.0), Row.of(0, Timestamp.valueOf("2021-11-16 00:00:00"), 300.0), Row.of(0, Timestamp.valueOf("2021-11-17 00:00:00"), 200.0), Row.of(0, Timestamp.valueOf("2021-11-18 00:00:00"), 100.0), Row.of(0, Timestamp.valueOf("2021-11-19 00:00:00"), 200.0), Row.of(0, Timestamp.valueOf("2021-11-20 00:00:00"), 300.0), Row.of(0, Timestamp.valueOf("2021-11-21 00:00:00"), 400.0), Row.of(0, Timestamp.valueOf("2021-11-22 00:00:00"), 500.0), Row.of(0, Timestamp.valueOf("2021-11-23 00:00:00"), 600.0), Row.of(0, Timestamp.valueOf("2021-11-24 00:00:00"), 700.0), Row.of(0, Timestamp.valueOf("2021-11-25 00:00:00"), 800.0), Row.of(0, Timestamp.valueOf("2021-11-26 00:00:00"), 900.0), Row.of(0, Timestamp.valueOf("2021-11-27 00:00:00"), 800.0), Row.of(0, Timestamp.valueOf("2021-11-28 00:00:00"), 700.0), Row.of(0, Timestamp.valueOf("2021-11-29 00:00:00"), 600.0), Row.of(0, Timestamp.valueOf("2021-11-30 00:00:00"), 500.0), Row.of(0, Timestamp.valueOf("2021-12-01 00:00:00"), 400.0), Row.of(0, Timestamp.valueOf("2021-12-02 00:00:00"), 300.0), Row.of(0, Timestamp.valueOf("2021-12-03 00:00:00"), 200.0) ); MemSourceBatchOp memSourceBatchOp = new MemSourceBatchOp( data, "id int, ts timestamp, series double" ); MemSourceStreamOp memSourceStreamOp = new MemSourceStreamOp( data, "id int, ts timestamp, series double" ); LSTNetTrainBatchOp lstNetTrainBatchOp = new LSTNetTrainBatchOp() .setTimeCol("ts") .setSelectedCol("series") .setNumEpochs(10) .setWindow(24) .setHorizon(1) .linkFrom(memSourceBatchOp); OverCountWindowStreamOp overCountWindowStreamOp = new OverCountWindowStreamOp() .setClause("MTABLE_AGG_PRECEDING(ts, series) as mtable_agg_series") .setTimeCol("ts") .setPrecedingRows(24); LSTNetPredictStreamOp lstNetPredictStreamOp = new LSTNetPredictStreamOp(lstNetTrainBatchOp) .setPredictNum(1) .setPredictionCol("pred") .setReservedCols() .setValueCol("mtable_agg_series"); lstNetPredictStreamOp .linkFrom( overCountWindowStreamOp .linkFrom(memSourceStreamOp) .filter("ts = TO_TIMESTAMP('2021-12-03 00:00:00')") ) .print(); StreamOperator.execute(); } }
pred |
---|
{“data”:{“ts”:[“2021-12-04 00:00:00.0”],“series”:[441.76019287109375]},“schema”:“ts TIMESTAMP,series DOUBLE”} |