auto Garch (AutoGarchStreamOp)

Java 类名:com.alibaba.alink.operator.stream.timeseries.AutoGarchStreamOp

Python 类名:AutoGarchStreamOp

功能介绍

给定分组,对每一组的数据使用AutoGarch进行时间序列预测。

算法原理

garch(Generalized AutoRegressive Conditional Heteroskedasticity) 又称广义自回归条件异方差模型,

garch 详细介绍请见链接 https://en.wikipedia.org/wiki/Autoregressive_conditional_heteroskedasticity#GARCH

garch是只需要指定MaxOrder, 不需要指定p/d/q, 对每个分组分别计算出最优的参数,给出预测结果。

使用方式

参考文档 https://www.yuque.com/pinshu/alink_guide/xbp5ky

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
predictionCol 预测结果列名 预测结果列名 String
valueCol value列,类型为MTable value列,类型为MTable String 所选列类型为 [M_TABLE, STRING]
icType 评价指标 评价指标 String “AIC”, “BIC”, “HQIC” “AIC”
ifGARCH11 是否用garch11 是否用garch11 Boolean true
maxOrder 模型(p, q)上限 模型(p, q)上限 Integer 10
minusMean 是否减去均值 是否减去均值 Boolean true
predictNum 预测条数 预测条数 Integer 1
predictionDetailCol 预测详细信息列名 预测详细信息列名 String
reservedCols 算法保留列名 算法保留列 String[] null
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

import time, datetime
import numpy as np
import pandas as pd

data = pd.DataFrame([
			[1,  datetime.datetime.fromtimestamp(1), 10.0],
			[1,  datetime.datetime.fromtimestamp(2), 11.0],
			[1,  datetime.datetime.fromtimestamp(3), 12.0],
			[1,  datetime.datetime.fromtimestamp(4), 13.0],
			[1,  datetime.datetime.fromtimestamp(5), 14.0],
			[1,  datetime.datetime.fromtimestamp(6), 15.0],
			[1,  datetime.datetime.fromtimestamp(7), 16.0],
			[1,  datetime.datetime.fromtimestamp(8), 17.0],
			[1,  datetime.datetime.fromtimestamp(9), 18.0],
			[1,  datetime.datetime.fromtimestamp(10), 19.0]
])

source = dataframeToOperator(data, schemaStr='id int, ts timestamp, val double', op_type='stream')

source.link(
			OverCountWindowStreamOp()
				.setGroupCols(["id"])
				.setTimeCol("ts")
				.setPrecedingRows(5)
				.setClause("mtable_agg_preceding(ts, val) as data")
		).link(
			AutoGarchStreamOp()
				.setValueCol("data")
				.setIcType("AIC")
				.setPredictNum(10)
				.setMaxOrder(4)
				.setIfGARCH11(False)
				.setMinusMean(False)
				.setPredictionCol("predict")
		).link(
			LookupValueInTimeSeriesStreamOp()
				.setTimeCol("ts")
				.setTimeSeriesCol("predict")
				.setOutputCol("out")
		).print()

StreamOperator.execute()

Java 代码

package com.alibaba.alink.operator.stream.timeseries;

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.batch.timeseries.AutoGarchBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.feature.OverCountWindowStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import com.alibaba.alink.testutil.AlinkTestBase;
import org.junit.Test;

import java.sql.Timestamp;
import java.util.Arrays;
import java.util.List;

public class AutoGarchStreamOpTest extends AlinkTestBase {

	@Test
	public void test() throws Exception {
		List <Row> mTableData = Arrays.asList(
			Row.of(1, new Timestamp(1), 10.0),
			Row.of(1, new Timestamp(2), 11.0),
			Row.of(1, new Timestamp(3), 12.0),
			Row.of(1, new Timestamp(4), 13.0),
			Row.of(1, new Timestamp(5), 14.0),
			Row.of(1, new Timestamp(6), 15.0),
			Row.of(1, new Timestamp(7), 16.0),
			Row.of(1, new Timestamp(8), 17.0),
			Row.of(1, new Timestamp(9), 18.0),
			Row.of(1, new Timestamp(10), 19.0)
		);

		MemSourceStreamOp source = new MemSourceStreamOp(mTableData, new String[] {"id", "ts", "val"});

		source.link(
			new OverCountWindowStreamOp()
				.setGroupCols("id")
				.setTimeCol("ts")
				.setPrecedingRows(5)
				.setClause("mtable_agg(ts, val) as data")
		).link(
			new AutoGarchStreamOp()
				.setValueCol("data")
				.setIcType("AIC")
				.setPredictNum(10)
				.setMaxOrder(4)
				.setIfGARCH11(false)
				.setMinusMean(false)
				.setPredictionCol("predict")
		).link(
			new LookupValueInTimeSeriesStreamOp()
				.setTimeCol("ts")
				.setTimeSeriesCol("predict")
				.setOutputCol("out")
		).print();

		StreamOperator.execute();

	}

}

运行结果

id ts val data predict out
1 1970-01-01 08:00:00.001 10.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.001”],“val”:[10.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null null
1 1970-01-01 08:00:00.002 11.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.001”,“1970-01-01 08:00:00.002”],“val”:[10.0,11.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null null
1 1970-01-01 08:00:00.003 12.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.001”,“1970-01-01 08:00:00.002”,“1970-01-01 08:00:00.003”],“val”:[10.0,11.0,12.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null null
1 1970-01-01 08:00:00.004 13.0000 {“data”:{“ts”:[“1970-01-01 08:00:00.001”,“1970-01-01 08:00:00.002”,“1970-01-01 08:00:00.003”,“1970-01-01 08:00:00.004”],“val”:[10.0,11.0,12.0,13.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} null null