Java 类名:com.alibaba.alink.pipeline.classification.BertTextPairClassifier
Python 类名:BertTextPairClassifier
Bert 文本对分类器。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
textCol | 文本列 | 文本列 | String | ✓ | ||
textPairCol | 文本对列 | 文本对列 | String | ✓ | ||
batchSize | 数据批大小 | 数据批大小 | Integer | 32 | ||
bertModelName | BERT模型名字 | BERT模型名字: Base-Chinese,Base-Multilingual-Cased,Base-Uncased,Base-Cased | String | “Base-Chinese” | ||
checkpointFilePath | 保存 checkpoint 的路径 | 用于保存中间结果的路径,将作为 TensorFlow 中 Estimator 的 model_dir 传入,需要为所有 worker 都能访问到的目录 |
String | null | ||
customConfigJson | 自定义参数 | 对应 https://github.com/alibaba/EasyTransfer/blob/master/easytransfer/app_zoo/app_config.py 中的config_json | String | |||
inferBatchSize | 推理数据批大小 | 推理数据批大小 | Integer | 256 | ||
intraOpParallelism | Op 间并发度 | Op 间并发度 | Integer | 4 | ||
learningRate | 学习率 | 学习率 | Double | 0.001 | ||
maxSeqLength | 句子截断长度 | 句子截断长度 | Integer | 128 | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
numEpochs | epoch 数 | epoch 数 | Double | 0.01 | ||
numFineTunedLayers | 微调层数 | 微调层数 | Integer | 1 | ||
numPSs | PS 角色数 | PS 角色的数量。值未设置时,如果 Worker 角色数也未设置,则为作业总并发度的 1/4(需要取整),否则为总并发度减去 Worker 角色数。 | Integer | null | ||
numWorkers | Worker 角色数 | Worker 角色的数量。值未设置时,如果 PS 角色数也未设置,则为作业总并发度的 3/4(需要取整),否则为总并发度减去 PS 角色数。 | Integer | null | ||
overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | false | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
pythonEnv | Python 环境路径 | Python 环境路径,一般情况下不需要填写。如果是压缩文件,需要解压后得到一个目录,且目录名与压缩文件主文件名一致,可以使用 http://, https://, oss://, hdfs:// 等路径;如果是目录,那么只能使用本地路径,即 file://。 | String | "" | ||
removeCheckpointBeforeTraining | 是否在训练前移除 checkpoint 相关文件 | 是否在训练前移除 checkpoint 相关文件用于重新训练,只会删除必要的文件 | Boolean | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
** 以下代码仅用于示意,可能需要修改部分代码或者配置环境后才能正常运行!**
url = "http://alink-algo-packages.oss-cn-hangzhou-zmf.aliyuncs.com/data/MRPC/train.tsv" schemaStr = "f_quality bigint, f_id_1 string, f_id_2 string, f_string_1 string, f_string_2 string" data = CsvSourceBatchOp() \ .setFilePath(url) \ .setSchemaStr(schemaStr) \ .setFieldDelimiter("\t") \ .setIgnoreFirstLine(True) \ .setQuoteChar(None) data = ShuffleBatchOp().linkFrom(data) classifier = BertTextPairClassifier() \ .setTextCol("f_string_1").setTextPairCol("f_string_2").setLabelCol("f_quality") \ .setNumEpochs(0.1) \ .setMaxSeqLength(32) \ .setNumFineTunedLayers(1) \ .setBertModelName("Base-Uncased") \ .setPredictionCol("pred") \ .setPredictionDetailCol("pred_detail") model = classifier.fit(data) predict = model.transform(data.firstN(300)) predict.print()
import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.ShuffleBatchOp; import com.alibaba.alink.operator.batch.source.CsvSourceBatchOp; import com.alibaba.alink.pipeline.classification.BertClassificationModel; import com.alibaba.alink.pipeline.classification.BertTextClassifier; import org.junit.Test; public class BertTextClassifierTest { @Test public void test() throws Exception { String url = "http://alink-test.oss-cn-beijing.aliyuncs.com/jiqi-temp/tf_ut_files/ChnSentiCorp_htl_small.csv"; String schemaStr = "label bigint, review string"; BatchOperator <?> data = new CsvSourceBatchOp() .setFilePath(url) .setSchemaStr(schemaStr) .setIgnoreFirstLine(true); data = data.where("review is not null"); data = new ShuffleBatchOp().linkFrom(data); BertTextClassifier classifier = new BertTextClassifier() .setTextCol("review") .setLabelCol("label") .setNumEpochs(0.01) .setNumFineTunedLayers(1) .setMaxSeqLength(128) .setBertModelName("Base-Chinese") .setPredictionCol("pred") .setPredictionDetailCol("pred_detail"); BertClassificationModel model = classifier.fit(data); BatchOperator <?> predict = model.transform(data.firstN(300)); predict.print(); } }
f_quality | f_id_1 | f_id_2 | f_string_1 | f_string_2 | pred | pred_detail |
---|---|---|---|---|---|---|
0 | 218017 | 218035 | Application Intelligence will be included as p… | The new application intelligence features will… | 1 | {“0”:0.20335173606872559,“1”:0.7966482639312744} |
1 | 1642169 | 1642368 | The new 25-member Governing Council ’s first m… | Its first decisions were to scrap all holidays… | 1 | {“0”:0.20335173606872559,“1”:0.7966482639312744} |
1 | 3399091 | 3399055 | Also in Mosul , rebel gunmen on Friday assassi… | Near a mosque in the northern town of Mosul , … | 1 | {“0”:0.20335173606872559,“1”:0.7966482639312744} |
0 | 2583299 | 2583319 | “ We ‘re still confident that Gephardt will ge… |Whether or not we get to the two-thirds , we ’…|1 |{”0“:0.20335173606872559,”1“:0.7966482639312744}| |1 |1568540 |1568627 |Monday , the CIA said analysts concluded that … |The CIA on Monday said voice and sound analyst…|1 |{”0“:0.20335173606872559,”1“:0.7966482639312744}| |… |… |… |… |… |… |… | |1 |1805639 |1805436 |Printer maker Lexmark International Inc. spurt… |Other gainers included Lexmark , which rose $ …|1 |{”0“:0.23678696155548096,”1“:0.763213038444519} | |1 |2182211 |2182122 |It ended a diplomatic drought between the two … |The contact between the delegations ended a di…|1 |{”0“:0.23678696155548096,”1“:0.763213038444519} | |1 |774666 |774871 |An unclear number of people were killed and mo… |Four people were killed and 50 injured in the …|1 |{”0“:0.23678696155548096,”1“:0.763213038444519} | |0 |2582380 |2582198 |Shaklee spokeswoman Jenifer Thompson said the … |Shaklee spokeswoman Jenifer Thompson referred …|1 |{”0“:0.23678696155548096,”1“:0.763213038444519} | |1 |427232 |427141 |After three months , Atkins dieters had lost a… |Three months into the study , the Atkins group…|1 |{”0“:0.23678696155548096,”1":0.763213038444519} |