Java 类名:com.alibaba.alink.pipeline.classification.MultilayerPerceptronClassifier
Python 类名:MultilayerPerceptronClassifier
多层感知机(MLP,Multilayer Perceptron)也被称作人工神经网络(ANN,Artificial Neural Network),经常用来进行多分类问题的训练预测。
多层感知机算法除了输入输出层外,它中间可以有多个隐层,最简单的MLP只含一个隐层,即三层的结构,如下图:
从上图可以看到,多层感知机层与层之间是全连接的。多层感知机最左边是输入层,中间是隐藏层,最后是输出层。 其中输出层对应的是各个分类标签,输出层
的每一个节点对应每一个标签的出现的概率。
多层感知机主要用于多分类问题,类似文字识别,语音识别,文本分析等问题。
[1]Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
MW Gardner, SR Dorling - Atmospheric environment, 1998 - Elsevier.
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
layers | 神经网络层大小 | 神经网络层大小 | int[] | ✓ | ||
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
blockSize | 数据分块大小,默认值64 | 数据分块大小,默认值64 | Integer | 64 | ||
epsilon | 收敛阈值 | 迭代方法的终止判断阈值,默认值为 1.0e-6 | Double | x >= 0.0 | 1.0E-6 | |
featureCols | 特征列名数组 | 特征列名数组,默认全选 | String[] | null | ||
initialWeights | 初始权重值 | 初始权重值 | DenseVector | null | ||
l1 | L1 正则化系数 | L1 正则化系数,默认为0。 | Double | x >= 0.0 | 0.0 | |
l2 | L2 正则化系数 | L2 正则化系数,默认为0。 | Double | x >= 0.0 | 0.0 | |
maxIter | 最大迭代步数 | 最大迭代步数,默认为 100 | Integer | x >= 1 | 100 | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | false | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [5,2,3.5,1,'Iris-versicolor'], [5.1,3.7,1.5,0.4,'Iris-setosa'], [6.4,2.8,5.6,2.2,'Iris-virginica'], [6,2.9,4.5,1.5,'Iris-versicolor'], [4.9,3,1.4,0.2,'Iris-setosa'], [5.7,2.6,3.5,1,'Iris-versicolor'], [4.6,3.6,1,0.2,'Iris-setosa'], [5.9,3,4.2,1.5,'Iris-versicolor'], [6.3,2.8,5.1,1.5,'Iris-virginica'], [4.7,3.2,1.3,0.2,'Iris-setosa'], [5.1,3.3,1.7,0.5,'Iris-setosa'], [5.5,2.4,3.8,1.1,'Iris-versicolor'], ]) data = BatchOperator.fromDataframe(df, schemaStr='sepal_length double, sepal_width double, petal_length double, petal_width double, category string') mlpc = MultilayerPerceptronClassifier() \ .setFeatureCols(["sepal_length", "sepal_width", "petal_length", "petal_width"]) \ .setLabelCol("category") \ .setLayers([4, 5, 3]) \ .setMaxIter(20) \ .setPredictionCol("pred_label") \ .setPredictionDetailCol("pred_detail") mlpc.fit(data).transform(data).firstN(4).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.pipeline.classification.MultilayerPerceptronClassifier; import org.junit.Test; import java.util.Arrays; import java.util.List; public class MultilayerPerceptronClassifierTest { @Test public void testMultilayerPerceptronClassifier() throws Exception { List <Row> df = Arrays.asList( Row.of(5.0, 2.0, 3.5, 1.0, "Iris-versicolor"), Row.of(5.1, 3.7, 1.5, 0.4, "Iris-setosa"), Row.of(6.4, 2.8, 5.6, 2.2, "Iris-virginica"), Row.of(6.0, 2.9, 4.5, 1.5, "Iris-versicolor"), Row.of(4.9, 3.0, 1.4, 0.2, "Iris-setosa"), Row.of(5.7, 2.6, 3.5, 1.0, "Iris-versicolor"), Row.of(4.6, 3.6, 1.0, 0.2, "Iris-setosa"), Row.of(5.9, 3.0, 4.2, 1.5, "Iris-versicolor"), Row.of(6.3, 2.8, 5.1, 1.5, "Iris-virginica"), Row.of(4.7, 3.2, 1.3, 0.2, "Iris-setosa"), Row.of(5.1, 3.3, 1.7, 0.5, "Iris-setosa"), Row.of(5.5, 2.4, 3.8, 1.1, "Iris-versicolor") ); BatchOperator <?> data = new MemSourceBatchOp(df, "sepal_length double, sepal_width double, petal_length double, petal_width double, category string"); MultilayerPerceptronClassifier mlpc = new MultilayerPerceptronClassifier() .setFeatureCols("sepal_length", "sepal_width", "petal_length", "petal_width") .setLabelCol("category") .setLayers(new int[] {4, 5, 3}) .setMaxIter(20) .setPredictionCol("pred_label") .setPredictionDetailCol("pred_detail"); mlpc.fit(data).transform(data).firstN(4).print(); } }
sepal_length | sepal_width | petal_length | petal_width | category | p |
---|---|---|---|---|---|
5.0000 | 2.0000 | 3.5000 | 1.0000 | Iris-versicolor | Iris-versicolor |
5.1000 | 3.7000 | 1.5000 | 0.4000 | Iris-setosa | Iris-versicolor |
6.4000 | 2.8000 | 5.6000 | 2.2000 | Iris-virginica | Iris-versicolor |
6.0000 | 2.9000 | 4.5000 | 1.5000 | Iris-versicolor | Iris-versicolor |
4.9000 | 3.0000 | 1.4000 | 0.2000 | Iris-setosa | Iris-versicolor |
5.7000 | 2.6000 | 3.5000 | 1.0000 | Iris-versicolor | Iris-versicolor |
4.6000 | 3.6000 | 1.0000 | 0.2000 | Iris-setosa | Iris-setosa |
5.9000 | 3.0000 | 4.2000 | 1.5000 | Iris-versicolor | Iris-versicolor |
6.3000 | 2.8000 | 5.1000 | 1.5000 | Iris-virginica | Iris-versicolor |
4.7000 | 3.2000 | 1.3000 | 0.2000 | Iris-setosa | Iris-versicolor |
5.1000 | 3.3000 | 1.7000 | 0.5000 | Iris-setosa | Iris-versicolor |
5.5000 | 2.4000 | 3.8000 | 1.1000 | Iris-versicolor | Iris-versicolor |