该文档涉及的组件

文本哈希特征生成 (DocHashCountVectorizer)

Java 类名:com.alibaba.alink.pipeline.nlp.DocHashCountVectorizer

Python 类名:DocHashCountVectorizer

功能介绍

根据文本中词语的特征信息,将每条文本转化为固定长度的稀疏向量。

在转换时,每个词语会通过哈希函数映射到稀疏向量的一个索引值,映射到同一个索引值的多个词语将看作同一个词语来统计特征信息。

使用方式

文本内容列(SelectedCol)中的内容用于统计词语的统计信息,需要是用空格分隔的词语。

将文本转换为稀疏向量时,需要指定向量维度(numFeatures)。 每个词语会通过哈希函数映射到一个 [0, numFeatures) 内的索引值,映射到同一个索引值的多个词语将看作同一个词语来统计特征信息。
而向量中对应索引的值表示对应的词语在文本中的特征信息,可以通过参数 featureType 来选择不同的特征。

在转换时,所使用的词语集合还可以通过参数来进行筛选:

  • maxDF/minDF:根据包含词语的文本次数(DF)进行筛选(当设置值在[0,1)区间时,表示占总文本数的比例);
  • minTF:仅在预测单条文本时起作用,根据词语在当前文本中的出现的次数进行筛选(当设置值在[0,1)区间时,表示占当前文本总次数的比例)。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
selectedCol 选中的列名 计算列对应的列名 String
featureType 特征类型 生成特征向量的类型,支持IDF/WORD_COUNT/TF_IDF/Binary/TF String “IDF”, “WORD_COUNT”, “TF_IDF”, “BINARY”, “TF” “WORD_COUNT”
minDF 最小文档词频 如果一个词出现的文档次数小于minDF, 这个词不会被包含在字典中。minTF可以是具体的词频也可以是整体词频的比例,如果minDF在[0,1)区间,会被认为是比例。 Double 1.0
minTF 最低词频 最低词频,如果词频小于minTF,这个词会被忽略掉。minTF可以是具体的词频也可以是整体词频的比例,如果minTF在[0,1)区间,会被认为是比例。 | Double | | | 1.0 |
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null |
| numFeatures | 向量维度 | 生成向量长度 | Integer | | | 262144 |
| outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | | | null |
| overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | | | false |
| reservedCols | 算法保留列名 | 算法保留列 | String[]
null
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1
modelStreamFilePath 模型流的文件路径 模型流的文件路径 String null
modelStreamScanInterval 扫描模型路径的时间间隔 描模型路径的时间间隔,单位秒 Integer 10
modelStreamStartTime 模型流的起始时间 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) String null

代码示例

Python 代码

df = pd.DataFrame([
    [0, u'二手旧书:医学电磁成像'],
    [1, u'二手美国文学选读( 下册 )李宜燮南开大学出版社 9787310003969'],
    [2, u'二手正版图解象棋入门/谢恩思主编/华龄出版社'],
    [3, u'二手中国糖尿病文献索引'],
    [4, u'二手郁达夫文集( 国内版 )全十二册馆藏书']
])

inOp = BatchOperator.fromDataframe(df, schemaStr='id int, text string')

pipeline = Pipeline() \
    .add(Segment().setSelectedCol("text")) \
    .add(DocHashCountVectorizer().setSelectedCol("text"))

pipeline.fit(inOp).transform(inOp).print()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.pipeline.Pipeline;
import com.alibaba.alink.pipeline.nlp.DocHashCountVectorizer;
import com.alibaba.alink.pipeline.nlp.Segment;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class DocHashCountVectorizerTest {
	@Test
	public void testDocHashCountVectorizer() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of(0, "二手旧书:医学电磁成像"),
			Row.of(1, "二手美国文学选读( 下册 )李宜燮南开大学出版社 9787310003969"),
			Row.of(2, "二手正版图解象棋入门/谢恩思主编/华龄出版社"),
			Row.of(3, "二手中国糖尿病文献索引"),
			Row.of(4, "二手郁达夫文集( 国内版 )全十二册馆藏书")
		);
		BatchOperator <?> inOp = new MemSourceBatchOp(df, "id int, text string");
		Pipeline pipeline = new Pipeline()
			.add(new Segment().setSelectedCol("text"))
			.add(new DocHashCountVectorizer().setSelectedCol("text"));
		pipeline.fit(inOp).transform(inOp).print();
	}
}

运行结果

输出数据

id text
0 $262144$10121:1.0 64444:1.0 119456:1.0 206232:1.0 210357:1.0 256946:1.0
1 $262144$0:6.0 37505:1.0 46743:1.0 93228:1.0 119217:1.0 138080:1.0 141480:1.0 172901:1.0 206232:1.0 216139:1.0 226698:1.0 254628:1.0
2 $262144$40170:1.0 70777:1.0 96509:1.0 126159:1.0 158267:1.0 181703:1.0 206232:1.0 216139:1.0 232884:1.0 250534:2.0 259932:1.0
3 $262144$206232:1.0 214785:1.0 251090:1.0 255656:1.0 261064:1.0
4 $262144$0:4.0 87711:1.0 138080:1.0 162140:1.0 180035:1.0 195777:1.0 206232:1.0 219988:1.0 241122:1.0 254628:1.0 257763:1.0 259051:1.0