Java 类名:com.alibaba.alink.pipeline.nlp.DocHashCountVectorizer
Python 类名:DocHashCountVectorizer
根据文本中词语的特征信息,将每条文本转化为固定长度的稀疏向量。
在转换时,每个词语会通过哈希函数映射到稀疏向量的一个索引值,映射到同一个索引值的多个词语将看作同一个词语来统计特征信息。
文本内容列(SelectedCol)中的内容用于统计词语的统计信息,需要是用空格分隔的词语。
将文本转换为稀疏向量时,需要指定向量维度(numFeatures)。 每个词语会通过哈希函数映射到一个 [0, numFeatures) 内的索引值,映射到同一个索引值的多个词语将看作同一个词语来统计特征信息。
而向量中对应索引的值表示对应的词语在文本中的特征信息,可以通过参数 featureType 来选择不同的特征。
在转换时,所使用的词语集合还可以通过参数来进行筛选:
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCol | 选中的列名 | 计算列对应的列名 | String | ✓ | ||
featureType | 特征类型 | 生成特征向量的类型,支持IDF/WORD_COUNT/TF_IDF/Binary/TF | String | “IDF”, “WORD_COUNT”, “TF_IDF”, “BINARY”, “TF” | “WORD_COUNT” | |
minDF | 最小文档词频 | 如果一个词出现的文档次数小于minDF, 这个词不会被包含在字典中。minTF可以是具体的词频也可以是整体词频的比例,如果minDF在[0,1)区间,会被认为是比例。 | Double | 1.0 | ||
minTF | 最低词频 | 最低词频,如果词频小于minTF,这个词会被忽略掉。minTF可以是具体的词频也可以是整体词频的比例,如果minTF在[0,1)区间,会被认为是比例。 | Double | | | 1.0 | | modelFilePath | 模型的文件路径 | 模型的文件路径 | String | | | null | | numFeatures | 向量维度 | 生成向量长度 | Integer | | | 262144 | | outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | | | null | | overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | | | false | | reservedCols | 算法保留列名 | 算法保留列 | String[] |
null | |||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
df = pd.DataFrame([ [0, u'二手旧书:医学电磁成像'], [1, u'二手美国文学选读( 下册 )李宜燮南开大学出版社 9787310003969'], [2, u'二手正版图解象棋入门/谢恩思主编/华龄出版社'], [3, u'二手中国糖尿病文献索引'], [4, u'二手郁达夫文集( 国内版 )全十二册馆藏书'] ]) inOp = BatchOperator.fromDataframe(df, schemaStr='id int, text string') pipeline = Pipeline() \ .add(Segment().setSelectedCol("text")) \ .add(DocHashCountVectorizer().setSelectedCol("text")) pipeline.fit(inOp).transform(inOp).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.pipeline.Pipeline; import com.alibaba.alink.pipeline.nlp.DocHashCountVectorizer; import com.alibaba.alink.pipeline.nlp.Segment; import org.junit.Test; import java.util.Arrays; import java.util.List; public class DocHashCountVectorizerTest { @Test public void testDocHashCountVectorizer() throws Exception { List <Row> df = Arrays.asList( Row.of(0, "二手旧书:医学电磁成像"), Row.of(1, "二手美国文学选读( 下册 )李宜燮南开大学出版社 9787310003969"), Row.of(2, "二手正版图解象棋入门/谢恩思主编/华龄出版社"), Row.of(3, "二手中国糖尿病文献索引"), Row.of(4, "二手郁达夫文集( 国内版 )全十二册馆藏书") ); BatchOperator <?> inOp = new MemSourceBatchOp(df, "id int, text string"); Pipeline pipeline = new Pipeline() .add(new Segment().setSelectedCol("text")) .add(new DocHashCountVectorizer().setSelectedCol("text")); pipeline.fit(inOp).transform(inOp).print(); } }
id | text |
---|---|
0 | $262144$10121:1.0 64444:1.0 119456:1.0 206232:1.0 210357:1.0 256946:1.0 |
1 | $262144$0:6.0 37505:1.0 46743:1.0 93228:1.0 119217:1.0 138080:1.0 141480:1.0 172901:1.0 206232:1.0 216139:1.0 226698:1.0 254628:1.0 |
2 | $262144$40170:1.0 70777:1.0 96509:1.0 126159:1.0 158267:1.0 181703:1.0 206232:1.0 216139:1.0 232884:1.0 250534:2.0 259932:1.0 |
3 | $262144$206232:1.0 214785:1.0 251090:1.0 255656:1.0 261064:1.0 |
4 | $262144$0:4.0 87711:1.0 138080:1.0 162140:1.0 180035:1.0 195777:1.0 206232:1.0 219988:1.0 241122:1.0 254628:1.0 257763:1.0 259051:1.0 |