Java 类名:com.alibaba.alink.operator.batch.graph.EdgeClusterCoefficientBatchOp
Python 类名:EdgeClusterCoefficientBatchOp
对于给定的图,对于图中的每条边,分别输出边的两个顶点的度,两个顶点的公共邻点数目,以及该边的聚类系数。
聚类系数的计算公式为 commonNeighbor / min(neighobr1, neighbor2)
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
edgeSourceCol | 边表中起点所在列 | 边表中起点所在列 | String | ✓ | 所选列类型为 [INTEGER, LONG, STRING] | |
edgeTargetCol | 边表中终点所在列 | 边表中终点所在列 | String | ✓ | 所选列类型为 [INTEGER, LONG, STRING] | |
asUndirectedGraph | 是否为无向图 | 是否为无向图 | Boolean | true |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([[1.0, 2.0],\ [1.0, 3.0],\ [3.0, 2.0],\ [5.0, 2.0],\ [3.0, 4.0],\ [4.0, 2.0],\ [5.0, 4.0],\ [5.0, 1.0],\ [5.0, 3.0],\ [5.0, 6.0],\ [5.0, 8.0],\ [7.0, 6.0],\ [7.0, 1.0],\ [7.0, 5.0],\ [8.0, 6.0],\ [8.0, 4.0]]) data = BatchOperator.fromDataframe(df, schemaStr="source double, target double") EdgeClusterCoefficientBatchOp()\ .setEdgeSourceCol("source")\ .setEdgeTargetCol("target")\ .linkFrom(data)\ .print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.testutil.AlinkTestBase; import org.junit.Test; import java.util.Arrays; public class EdgeClusterCoefficientBatchOpTest extends AlinkTestBase { @Test public void test() throws Exception { Row[] rows = new Row[] { Row.of(1.0, 2.0), Row.of(1.0, 3.0), Row.of(3.0, 2.0), Row.of(5.0, 2.0), Row.of(3.0, 4.0), Row.of(4.0, 2.0), Row.of(5.0, 4.0), Row.of(5.0, 1.0), Row.of(5.0, 3.0), Row.of(5.0, 6.0), Row.of(5.0, 8.0), Row.of(7.0, 6.0), Row.of(7.0, 1.0), Row.of(7.0, 5.0), Row.of(8.0, 6.0), Row.of(8.0, 4.0) }; MemSourceBatchOp dataSource = new MemSourceBatchOp(Arrays.asList(rows), "source double,target double"); BatchOperator res = new EdgeClusterCoefficientBatchOp() .setEdgeSourceCol("source") .setEdgeTargetCol("target") .linkFrom(dataSource); res.print(); } }
ndoe1 | node2 | neighbor1 | neighbor2 | commonNeighbor | edgeClusterCoefficient |
---|---|---|---|---|---|
7.0000 | 1.0000 | 3 | 4 | 1 | 0.3333 |
3.0000 | 1.0000 | 4 | 4 | 2 | 0.5000 |
6.0000 | 7.0000 | 3 | 3 | 1 | 0.3333 |
7.0000 | 5.0000 | 3 | 7 | 2 | 0.6667 |
4.0000 | 5.0000 | 4 | 7 | 3 | 0.7500 |
3.0000 | 5.0000 | 4 | 7 | 3 | 0.7500 |
1.0000 | 5.0000 | 4 | 7 | 3 | 0.7500 |
6.0000 | 5.0000 | 3 | 7 | 2 | 0.6667 |
8.0000 | 5.0000 | 3 | 7 | 2 | 0.6667 |
2.0000 | 5.0000 | 4 | 7 | 3 | 0.7500 |
3.0000 | 4.0000 | 4 | 4 | 2 | 0.5000 |
4.0000 | 8.0000 | 4 | 3 | 1 | 0.3333 |
6.0000 | 8.0000 | 3 | 3 | 1 | 0.3333 |
4.0000 | 2.0000 | 4 | 4 | 2 | 0.5000 |
3.0000 | 2.0000 | 4 | 4 | 3 | 0.7500 |
1.0000 | 2.0000 | 4 | 4 | 2 | 0.5000 |