Java 类名:com.alibaba.alink.operator.batch.graph.Node2VecWalkBatchOp
Python 类名:Node2VecWalkBatchOp
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
sourceCol | 起始点列名 | 用来指定起始点列 | String | ✓ | 所选列类型为 [INTEGER, LONG, STRING] | |
targetCol | 中止点点列名 | 用来指定中止点列 | String | ✓ | 所选列类型为 [INTEGER, LONG, STRING] | |
walkLength | 游走的长度 | 随机游走完向量的长度 | Integer | ✓ | ||
walkNum | 路径数目 | 每一个起始点游走出多少条路径 | Integer | ✓ | ||
delimiter | 分隔符 | 用来分割字符串 | String | “ ” | ||
isToUndigraph | 是否转无向图 | 选为true时,会将当前图转成无向图,然后再游走 | Boolean | false | ||
p | 算法参数P | 控制随机游走序列的跳转概率 | Double | 1.0 | ||
q | 算法参数Q | 控制随机游走序列的跳转概率 | Double | 1.0 | ||
samplingMethod | 起始点列名 | 用来指定起始点列 | String | “ALIAS” | ||
weightCol | 权重列名 | 权重列对应的列名 | String | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [1, 1, 1.0], [1, 2, 1.0], [2, 3, 1.0], [3, 4, 1.0], [4, 2, 1.0], [3, 1, 1.0], [2, 4, 1.0], [4, 1, 1.0]]) source = BatchOperator.fromDataframe(df, schemaStr="start int, dest int, weight double") n2vWalkBatchOp = Node2VecWalkBatchOp() \ .setWalkNum(4) \ .setWalkLength(50) \ .setDelimiter(",") \ .setSourceCol("start") \ .setTargetCol("dest") \ .setIsToUndigraph(True) \ .setWeightCol("weight") n2vWalkBatchOp.linkFrom(source).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.graph.Node2VecWalkBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class Node2VecWalkBatchOpTest { @Test public void testNode2VecWalkBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of(1, 1, 1.0), Row.of(1, 2, 1.0), Row.of(2, 3, 1.0), Row.of(3, 4, 1.0), Row.of(4, 2, 1.0), Row.of(3, 1, 1.0), Row.of(2, 4, 1.0) ); BatchOperator <?> source = new MemSourceBatchOp(df, "start int, dest int, weight double"); BatchOperator <?> n2vWalkBatchOp = new Node2VecWalkBatchOp() .setWalkNum(4) .setWalkLength(50) .setDelimiter(",") .setSourceCol("start") .setTargetCol("dest") .setIsToUndigraph(true) .setWeightCol("weight"); n2vWalkBatchOp.linkFrom(source).print(); } }
path |
---|
3,2,1,1,4,2,3,4,2,1,3,1,1,1,3,1,3,4,1,2,4,3,2,1,1,3,2,4,3,4,1,4,2,1,2,1,4,3,1,2,1,3,4,2,4,3,2,3,4,1 |
2,3,2,4,2,1,2,3,2,3,2,4,3,1,2,3,4,2,4,2,3,2,3,2,4,2,1,3,1,4,1,1,4,2,1,2,4,1,3,1,1,3,4,2,4,2,3,4,2,4 |
4,2,1,4,1,1,1,2,3,4,2,3,2,3,2,4,1,2,3,2,1,2,4,3,1,1,2,4,3,4,2,4,1,2,4,3,1,4,2,4,2,1,3,4,2,1,2,4,3,4 |
4,3,1,1,1,3,4,3,4,1,2,4,2,3,2,1,1,1,2,3,4,1,2,4,3,4,3,1,4,2,3,2,4,1,1,1,3,1,3,2,4,2,4,3,1,1,1,3,2,1 |
4,3,1,1,3,2,3,1,4,1,2,1,3,4,3,4,2,1,2,4,2,3,4,2,4,2,4,2,3,1,4,3,2,4,1,2,3,2,1,1,3,1,1,4,1,4,1,4,1,2 |
1,3,4,1,2,3,1,3,4,2,1,4,3,2,1,3,1,4,1,4,3,1,4,2,1,2,3,4,3,4,2,3,4,3,4,1,1,1,1,2,4,1,2,4,1,2,4,2,3,1 |
3,4,1,4,1,2,1,3,2,4,2,1,2,3,1,4,1,2,4,2,4,3,4,3,2,3,2,1,2,1,1,1,4,2,3,4,1,1,4,2,3,4,3,1,4,3,4,1,4,3 |
2,3,1,3,4,1,1,1,4,3,4,1,2,3,2,1,1,3,4,3,2,3,1,3,4,3,2,1,4,3,1,1,2,4,2,1,3,1,3,1,2,3,1,4,3,2,1,2,1,1 |
1,2,1,3,1,4,2,3,2,1,3,4,2,4,3,4,2,4,2,1,4,3,2,3,4,1,4,2,1,4,1,3,4,2,1,4,1,4,3,1,3,2,4,1,1,4,1,1,2,3 |
1,2,4,2,1,2,4,3,4,3,4,3,1,2,1,2,3,2,3,4,2,4,3,2,3,2,3,1,1,1,4,2,1,4,1,2,1,2,1,1,2,4,2,1,4,2,3,1,1,4 |
3,4,1,1,1,2,4,2,4,1,1,1,2,3,2,4,2,1,2,3,4,1,1,3,4,1,2,4,3,2,1,1,4,1,2,1,2,4,2,4,1,3,4,2,1,3,4,3,2,1 |
3,2,3,4,3,1,2,4,2,4,1,2,3,4,3,1,2,4,3,2,3,2,3,2,3,4,3,2,4,3,4,2,4,3,1,1,4,1,4,1,3,1,2,3,4,1,4,3,4,2 |
1,4,2,4,1,4,1,2,1,1,2,3,1,4,3,4,1,3,1,3,4,2,4,3,2,3,2,3,4,1,3,2,3,4,2,3,4,1,2,4,2,3,4,3,2,3,1,4,2,3 |
2,4,3,1,1,3,1,2,4,2,4,3,2,1,2,4,3,2,3,1,1,3,2,1,3,1,4,1,3,1,1,1,1,2,1,3,1,1,3,4,2,1,2,1,1,2,4,3,1,2 |
4,2,1,4,3,2,1,1,3,1,4,1,3,2,4,2,4,2,4,3,4,1,3,4,2,3,2,1,3,1,1,1,4,2,1,2,4,1,4,2,1,4,1,2,4,2,1,4,1,2 |
2,4,1,4,3,2,1,3,1,3,1,4,1,2,4,1,3,4,2,1,1,3,1,3,1,1,1,1,1,2,4,1,4,3,1,2,1,2,4,1,3,4,1,2,3,1,4,2,4,3 |