Java 类名:com.alibaba.alink.pipeline.clustering.GaussianMixture
Python 类名:GaussianMixture
高斯混合模型聚类
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
vectorCol | 向量列名 | 向量列对应的列名 | String | ✓ | ||
epsilon | 收敛阈值 | 当两轮迭代的中心点距离小于epsilon时,算法收敛。 | Double | 1.0E-4 | ||
k | 聚类中心点数量 | 聚类中心点数量 | Integer | 2 | ||
maxIter | 最大迭代步数 | 最大迭代步数,默认为 100 | Integer | x >= 1 | 100 | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
overwriteSink | 是否覆写已有数据 | 是否覆写已有数据 | Boolean | false | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
randomSeed | 随机数种子 | 随机数种子 | Integer | 0 | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["-0.6264538 0.1836433"], ["-0.8356286 1.5952808"], ["0.3295078 -0.8204684"], ["0.4874291 0.7383247"], ["0.5757814 -0.3053884"], ["1.5117812 0.3898432"], ["-0.6212406 -2.2146999"], ["11.1249309 9.9550664"], ["9.9838097 10.9438362"], ["10.8212212 10.5939013"], ["10.9189774 10.7821363"], ["10.0745650 8.0106483"], ["10.6198257 9.9438713"], ["9.8442045 8.5292476"], ["9.5218499 10.4179416"], ]) data = BatchOperator.fromDataframe(df, schemaStr='features string') gmm = GaussianMixture() \ .setPredictionCol("cluster_id") \ .setVectorCol("features") \ .setPredictionDetailCol("cluster_detail") \ .setEpsilon(0.) gmm.fit(data).transform(data).print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.pipeline.clustering.GaussianMixture; import org.junit.Test; import java.util.Arrays; import java.util.List; public class GaussianMixtureTest { @Test public void testGaussianMixture() throws Exception { List <Row> df_data = Arrays.asList( Row.of("-0.6264538 0.1836433"), Row.of("-0.8356286 1.5952808"), Row.of("0.3295078 -0.8204684"), Row.of("0.4874291 0.7383247"), Row.of("0.5757814 -0.3053884"), Row.of("1.5117812 0.3898432"), Row.of("-0.6212406 -2.2146999"), Row.of("11.1249309 9.9550664"), Row.of("9.9838097 10.9438362"), Row.of("10.8212212 10.5939013"), Row.of("10.9189774 10.7821363"), Row.of("10.0745650 8.0106483"), Row.of("10.6198257 9.9438713"), Row.of("9.8442045 8.5292476"), Row.of("9.5218499 10.4179416") ); BatchOperator <?> data = new MemSourceBatchOp(df_data, "features string"); GaussianMixture gmm = new GaussianMixture() .setPredictionCol("cluster_id") .setVectorCol("features") .setPredictionDetailCol("cluster_detail") .setEpsilon(0.); gmm.fit(data).transform(data).print(); } }
features | cluster_id | cluster_detail |
---|---|---|
-0.6264538 0.1836433 | 0 | 1.0 4.275273913968281E-92 |
-0.8356286 1.5952808 | 0 | 1.0 1.0260377730239899E-92 |
0.3295078 -0.8204684 | 0 | 1.0 1.0970173367545207E-80 |
0.4874291 0.7383247 | 0 | 1.0 3.302173132311E-75 |
0.5757814 -0.3053884 | 0 | 1.0 3.1638113605165424E-76 |
1.5117812 0.3898432 | 0 | 1.0 2.101805230873172E-62 |
-0.6212406 -2.2146999 | 0 | 1.0 6.772270268600749E-97 |
11.1249309 9.9550664 | 1 | 3.156783801247968E-56 1.0 |
9.9838097 10.9438362 | 1 | 1.9024447346702425E-51 1.0 |
10.8212212 10.5939013 | 1 | 2.800973098729604E-56 1.0 |
10.9189774 10.7821363 | 1 | 1.7209132744891298E-57 1.0 |
10.0745650 8.0106483 | 1 | 2.8642696635130495E-43 1.0 |
10.6198257 9.9438713 | 1 | 5.773273991940433E-53 1.0 |
9.8442045 8.5292476 | 1 | 2.5273123050925483E-43 1.0 |
9.5218499 10.4179416 | 1 | 1.7314580596767853E-46 1.0 |