该文档涉及的组件

Lasso回归 (LassoRegression)

Java 类名:com.alibaba.alink.pipeline.regression.LassoRegression

Python 类名:LassoRegression

功能介绍

Lasso回归算法是由1996年Robert Tibshirani首次提出。是一种经典的回归算法。Lasso回归组件支持稀疏、稠密两种数据格式,并且支持带权重样本训练。

算法原理

Lasso回归算法通过构造一个惩罚函数得到一个较为精炼的模型,使得它压缩一些回归系数,即强制系数绝对值之和小于某个固定值;同时设定一些回归系数为零。因此保留了子集收缩的优点,是一种处理具有复共线性数据的有偏估计。

算法使用

Lasso回归模型应用领域和线性回归类似,经常被用来做一些数值型变量的预测,类似房价预测、销售量预测、贷款额度预测、温度预测、适度预测等。

  • 备注 :该组件训练的时候 FeatureCols 和 VectorCol 是两个互斥参数,只能有一个参数来描述算法的输入特征。

文献或出处

[1] Tibshirani, Robert. “Regression shrinkage and selection via the lasso.” Journal of the Royal Statistical Society: Series B (Methodological) 58.1 (1996): 267-288.

[2] https://baike.baidu.com/item/LASSO/20366865?fr=aladdin

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
labelCol 标签列名 输入表中的标签列名 String
lambda 惩罚因子:lambda 惩罚因子,必选 Double
predictionCol 预测结果列名 预测结果列名 String
epsilon 收敛阈值 迭代方法的终止判断阈值,默认值为 1.0e-6 Double x >= 0.0 1.0E-6
featureCols 特征列名数组 特征列名数组,默认全选 String[] null
learningRate 学习率 优化算法的学习率,默认0.1。 Double 0.1
maxIter 最大迭代步数 最大迭代步数,默认为 100 Integer x >= 1 100
modelFilePath 模型的文件路径 模型的文件路径 String null
optimMethod 优化方法 优化问题求解时选择的优化方法 String “LBFGS”, “GD”, “Newton”, “SGD”, “OWLQN” null
overwriteSink 是否覆写已有数据 是否覆写已有数据 Boolean false
reservedCols 算法保留列名 算法保留列 String[] null
standardization 是否正则化 是否对训练数据做正则化,默认true Boolean true
vectorCol 向量列名 向量列对应的列名,默认值是null String null
weightCol 权重列名 权重列对应的列名 String 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] null
withIntercept 是否有常数项 是否有常数项,默认true Boolean true
numThreads 组件多线程线程个数 组件多线程线程个数 Integer 1
modelStreamFilePath 模型流的文件路径 模型流的文件路径 String null
modelStreamScanInterval 扫描模型路径的时间间隔 描模型路径的时间间隔,单位秒 Integer 10
modelStreamStartTime 模型流的起始时间 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) String null

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
    [2, 1, 1],
    [3, 2, 1],
    [4, 3, 2],
    [2, 4, 1],
    [2, 2, 1],
    [4, 3, 2],
    [1, 2, 1],
    [5, 3, 3]])

batchData = BatchOperator.fromDataframe(df, schemaStr='f0 int, f1 int, label int')
colnames = ["f0","f1"]
lasso = LassoRegression()\
            .setFeatureCols(colnames)\
            .setLambda(0.1)\
            .setLabelCol("label")\
            .setPredictionCol("pred")
model = lasso.fit(batchData)
model.transform(batchData).print()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.pipeline.regression.LassoRegression;
import com.alibaba.alink.pipeline.regression.LassoRegressionModel;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class LassoRegressionTest {
	@Test
	public void testLassoRegression() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of(2, 1, 1),
			Row.of(3, 2, 1),
			Row.of(4, 3, 2),
			Row.of(2, 4, 1),
			Row.of(2, 2, 1),
			Row.of(4, 3, 2),
			Row.of(1, 2, 1)
		);
		BatchOperator <?> batchData = new MemSourceBatchOp(df, "f0 int, f1 int, label int");
		String[] colnames = new String[] {"f0", "f1"};
		LassoRegression lasso = new LassoRegression()
			.setFeatureCols(colnames)
			.setLambda(0.1)
			.setLabelCol("label")
			.setPredictionCol("pred");
		LassoRegressionModel model = lasso.fit(batchData);
		model.transform(batchData).print();
	}
}

运行结果

f0 f1 label pred
2 1 1 1.1304
3 2 1 1.4047
4 3 2 1.6790
2 4 1 1.1651
2 2 1 1.1420
4 3 2 1.6790
1 2 1 0.8793