Java 类名:com.alibaba.alink.operator.batch.outlier.OcsvmModelOutlierPredictBatchOp
Python 类名:OcsvmModelOutlierPredictBatchOp
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
| modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
| outlierThreshold | 异常评分阈值 | 只有评分大于该阈值才会被认为是异常点 | Double | |||
| predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
| reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
| numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
data = RandomTableSourceBatchOp()\
.setNumCols(5)\
.setNumRows(1000)\
.setIdCol("id")\
.setOutputCols(["x1", "x2", "x3", "x4"])
dataTest = data
ocsvm = OcsvmModelOutlierTrainBatchOp().setFeatureCols(["x1", "x2", "x3", "x4"]).setGamma(0.5).setNu(0.1).setKernelType("RBF")
model = data.link(ocsvm)
predictor = OcsvmModelOutlierPredictBatchOp().setPredictionCol("pred")
predictor.linkFrom(model, dataTest).print()
package com.alibaba.alink.operator.batch.outlier;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.RandomTableSourceBatchOp;
import org.junit.Test;
public class OneClassSvmTrainBatchOpTest {
@Test
public void testPipelineTable() throws Exception {
BatchOperator <?> data = new RandomTableSourceBatchOp()
.setNumCols(5)
.setNumRows(1000L)
.setIdCol("id")
.setOutputCols("x1", "x2", "x3", "x4");
OcsvmModelOutlierTrainBatchOp model = new OcsvmModelOutlierTrainBatchOp()
.setFeatureCols(new String[] {"x1", "x2", "x3", "x4"})
.setGamma(0.5)
.setNu(0.1)
.setKernelType("RBF").linkFrom(data);
new OcsvmModelOutlierPredictBatchOp().setPredictionCol("pred").linkFrom(model, data).print();
}
}
| id | x1 | x2 | x3 | x4 | pred |
|---|---|---|---|---|---|
| 0 | 0.7310 | 0.2405 | 0.6374 | 0.5504 | false |
| 12 | 0.5975 | 0.3332 | 0.3852 | 0.9848 | false |
| 24 | 0.8792 | 0.9412 | 0.2750 | 0.1289 | true |
| 36 | 0.1466 | 0.0232 | 0.5467 | 0.9645 | true |
| 48 | 0.1045 | 0.6251 | 0.4108 | 0.7763 | false |
| 60 | 0.9907 | 0.4872 | 0.7462 | 0.7332 | false |
| … | … | … | … | … | … |
| 997 | 0.1339 | 0.0831 | 0.9786 | 0.7224 | true |
| 998 | 0.7150 | 0.1432 | 0.4630 | 0.0045 | false |
| 999 | 0.0715 | 0.3484 | 0.3388 | 0.8594 | false |