Java 类名:com.alibaba.alink.operator.stream.feature.PcaPredictStreamOp
Python 类名:PcaPredictStreamOp
主成分分析,是考察多个变量间相关性一种多元统计方法,研究如何通过少数几个主成分来揭示多个变量间的内部结构,即从原始变量中导出少数几个主成分,使它们尽可能多地保留原始变量的信息,且彼此间互不相关,作为新的综合指标。详细介绍请见维基百科链接wiki。
主成分分析功能包含主成分分析训练和主成分分析预测(批和流)。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
vectorCol | 向量列名 | 向量列对应的列名,默认值是null | String | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | null | |
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", 1, 1, 2.0, True], ["c", 1, 2, -3.0, True], ["a", 2, 2, 2.0, False], ["c", 0, 0, 0.0, False] ]) batchSource = BatchOperator.fromDataframe(df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean') streamSource = StreamOperator.fromDataframe(df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean') trainOp = QuantileDiscretizerTrainBatchOp()\ .setSelectedCols(['f_double'])\ .setNumBuckets(8)\ .linkFrom(batchSource) predictBatchOp = QuantileDiscretizerPredictBatchOp()\ .setSelectedCols(['f_double']) predictBatchOp.linkFrom(trainOp,batchSource).print() predictStreamOp = QuantileDiscretizerPredictStreamOp(trainOp)\ .setSelectedCols(['f_double']) predictStreamOp.linkFrom(streamSource).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerPredictBatchOp; import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.feature.QuantileDiscretizerPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class PcaPredictStreamOpTest { @Test public void testPcaPredictStreamOp() throws Exception { List <Row> df = Arrays.asList( Row.of("a", 1, 1, 2.0, true), Row.of("c", 1, 2, -3.0, true), Row.of("a", 2, 2, 2.0, false), Row.of("c", 0, 0, 0.0, false) ); BatchOperator <?> batchSource = new MemSourceBatchOp(df, "f_string string, f_long int, f_int int, f_double double, f_boolean boolean"); StreamOperator <?> streamSource = new MemSourceStreamOp(df, "f_string string, f_long int, f_int int, f_double double, f_boolean boolean"); BatchOperator <?> trainOp = new QuantileDiscretizerTrainBatchOp() .setSelectedCols("f_double") .setNumBuckets(8) .linkFrom(batchSource); BatchOperator <?> predictBatchOp = new QuantileDiscretizerPredictBatchOp() .setSelectedCols("f_double"); predictBatchOp.linkFrom(trainOp, batchSource).print(); StreamOperator <?> predictStreamOp = new QuantileDiscretizerPredictStreamOp(trainOp) .setSelectedCols("f_double"); predictStreamOp.linkFrom(streamSource).print(); StreamOperator.execute(); } }
f_string | f_long | f_int | f_double | f_boolean |
---|---|---|---|---|
a | 1 | 1 | 2 | true |
c | 1 | 2 | 0 | true |
a | 2 | 2 | 2 | false |
c | 0 | 0 | 1 | false |
f_string | f_long | f_int | f_double | f_boolean |
---|---|---|---|---|
a | 2 | 2 | 2 | false |
c | 1 | 2 | 0 | true |
c | 0 | 0 | 1 | false |
a | 1 | 1 | 2 | true |