Java 类名:com.alibaba.alink.operator.batch.feature.QuantileDiscretizerTrainBatchOp
Python 类名:QuantileDiscretizerTrainBatchOp
分位点离散可以计算选定列的分位点,然后使用这些分位点进行离散化。
生成选中列对应的q-quantile,其中可以所有列指定一个,也可以每一列对应一个
预测结果为单个token的index
预测结果为稀疏向量:
1. dropLast为true,向量中非零元个数为0或者1
2. dropLast为false,向量中非零元个数必定为1
预测结果为稀疏向量,是预测选择列中,各列预测为VECTOR时,按照选择顺序ASSEMBLE的结果。
$$ vectorSize = numBuckets - dropLast(true: 1, false: 0) + (handleInvalid: keep(1), skip(0), error(0)) $$
numBuckets: 训练参数
dropLast: 预测参数
handleInvalid: 预测参数
1. 正常数据: 唯一的非零元为数据所在的bucket,若 dropLast为true, 最大的bucket的值会被丢掉,预测结果为全零元
2. null:
2.1 handleInvalid为keep: 唯一的非零元为:numBuckets - dropLast(true: 1, false: 0)
2.2 handleInvalid为skip: null
2.3 handleInvalid为error: 报错
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
leftOpen | 是否左开右闭 | 左开右闭为true,左闭右开为false | Boolean | true | ||
numBuckets | quantile个数 | quantile个数,对所有列有效。 | Integer | 2 | ||
numBucketsArray | quantile个数 | quantile个数,每一列对应数组中一个元素。 | Integer[] | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", 1, 1, 2.0, True], ["c", 1, 2, -3.0, True], ["a", 2, 2, 2.0, False], ["c", 0, 0, 0.0, False] ]) batchSource = BatchOperator.fromDataframe( df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean') streamSource = StreamOperator.fromDataframe( df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean') trainOp = QuantileDiscretizerTrainBatchOp()\ .setSelectedCols(['f_double'])\ .setNumBuckets(8)\ .linkFrom(batchSource) predictBatchOp = QuantileDiscretizerPredictBatchOp()\ .setSelectedCols(['f_double']) predictStreamOp = QuantileDiscretizerPredictStreamOp(trainOp)\ .setSelectedCols(['f_double']) predictBatchOp.linkFrom(trainOp, batchSource).print() predictStreamOp.linkFrom(streamSource) .print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerPredictBatchOp; import com.alibaba.alink.operator.batch.feature.QuantileDiscretizerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.feature.QuantileDiscretizerPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class QuantileDiscretizerTrainBatchOpTest { @Test public void testQuantileDiscretizerTrainBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("a", 1, 1, 2.0, true), Row.of("c", 1, 2, -3.0, true), Row.of("a", 2, 2, 2.0, false), Row.of("c", 0, 0, 0.0, false) ); BatchOperator <?> batchSource = new MemSourceBatchOp(df, "f_string string, f_long int, f_int int, f_double double, f_boolean boolean"); StreamOperator <?> streamSource = new MemSourceStreamOp(df, "f_string string, f_long int, f_int int, f_double double, f_boolean boolean"); BatchOperator <?> trainOp = new QuantileDiscretizerTrainBatchOp() .setSelectedCols("f_double") .setNumBuckets(8) .linkFrom(batchSource); BatchOperator <?> predictBatchOp = new QuantileDiscretizerPredictBatchOp() .setSelectedCols("f_double"); predictBatchOp.linkFrom(trainOp, batchSource).print(); StreamOperator <?> predictStreamOp = new QuantileDiscretizerPredictStreamOp(trainOp) .setSelectedCols("f_double"); predictStreamOp.linkFrom(streamSource).print(); StreamOperator.execute(); } }
f_string | f_long | f_int | f_double | f_boolean |
---|---|---|---|---|
a | 1 | 1 | 2 | true |
c | 1 | 2 | 0 | true |
a | 2 | 2 | 2 | false |
c | 0 | 0 | 1 | false |