Java 类名:com.alibaba.alink.operator.batch.feature.ChiSqSelectorBatchOp
Python 类名:ChiSqSelectorBatchOp
针对table数据,进行特征筛选。计算features和label列两两的卡方值,取最大的n个feature作为结果。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
labelCol | 标签列名 | 输入表中的标签列名 | String | ✓ | ||
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | ||
fdr | 发现阈值 | 发现阈值, 默认值0.05 | Double | 0.05 | ||
fpr | p value的阈值 | p value的阈值,默认值0.05 | Double | 0.05 | ||
fwe | 错误率阈值 | 错误率阈值, 默认值0.05 | Double | 0.05 | ||
numTopFeatures | 最大的p-value列个数 | 最大的p-value列个数, 默认值50 | Integer | 50 | ||
percentile | 筛选的百分比 | 筛选的百分比,默认值0.1 | Double | 0.1 | ||
selectorType | 筛选类型 | 筛选类型,包含“NumTopFeatures”,“percentile”, “fpr”, “fdr”, “fwe”五种。 | String | “NumTopFeatures”, “PERCENTILE”, “FPR”, “FDR”, “FWE” | “NumTopFeatures” |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["a", 1, 1,2.0, True], ["c", 1, 2, -3.0, True], ["a", 2, 2,2.0, False], ["c", 0, 0, 0.0, False] ]) source = BatchOperator.fromDataframe(df, schemaStr='f_string string, f_long long, f_int int, f_double double, f_boolean boolean') selector = ChiSqSelectorBatchOp()\ .setSelectedCols(["f_string", "f_long", "f_int", "f_double"])\ .setLabelCol("f_boolean")\ .setNumTopFeatures(2) selector.linkFrom(source) modelInfo: ChisqSelectorModelInfo = selector.collectModelInfo() print(modelInfo.getColNames())
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.feature.ChiSqSelectorBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.common.feature.ChisqSelectorModelInfo; import org.junit.Test; import java.util.Arrays; import java.util.List; public class ChiSqSelectorBatchOpTest { @Test public void testChiSqSelectorBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("a", 1L, 1, 2.0, true), Row.of("c", 1L, 2, -3.0, true), Row.of("a", 2L, 2, 2.0, false), Row.of("c", 0L, 0, 0.0, false) ); BatchOperator <?> source = new MemSourceBatchOp(df, "f_string string, f_long long, f_int int, f_double double, f_boolean boolean"); ChiSqSelectorBatchOp selector = new ChiSqSelectorBatchOp() .setSelectedCols("f_string", "f_long", "f_int", "f_double") .setLabelCol("f_boolean") .setNumTopFeatures(2); selector.linkFrom(source); ChisqSelectorModelInfo modelInfo = selector.collectModelInfo(); System.out.println(modelInfo.toString()); } }
------------------------- ChisqSelectorModelInfo -------------------------
Number of Selector Features: 2
Number of Features: 4
Type of Selector: NumTopFeatures
Number of Top Features: 2
Selector Indices:
| ColName|ChiSquare|PValue| DF|Selected|
|--------|---------|------|---|--------|
| f_long| 4|0.1353| 2| true|
| f_int| 2|0.3679| 2| true|
|f_double| 2|0.3679| 2| false|
|f_string| 0| 1| 1| false|