等宽离散化训练 (EqualWidthDiscretizerTrainBatchOp)
Java 类名:com.alibaba.alink.operator.batch.feature.EqualWidthDiscretizerTrainBatchOp
Python 类名:EqualWidthDiscretizerTrainBatchOp
功能介绍
等宽离散可以计算选定数值列的分位点,每个区间都有相同的组距,也就是数据范围/组数,通过训练可以得到一系列分为点,
然后使用这些分位点进行预测。
其中可以所有列使用同一个分组数量,也可以每一列对应一个分组数量。预测结果可以是特征值或一系列0/1离散特征。
参数说明
名称 |
中文名称 |
描述 |
类型 |
是否必须? |
取值范围 |
默认值 |
selectedCols |
选择的列名 |
计算列对应的列名列表 |
String[] |
✓ |
所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] |
|
leftOpen |
是否左开右闭 |
左开右闭为true,左闭右开为false |
Boolean |
|
|
true |
numBuckets |
quantile个数 |
quantile个数,对所有列有效。 |
Integer |
|
|
2 |
numBucketsArray |
quantile个数 |
quantile个数,每一列对应数组中一个元素。 |
Integer[] |
|
|
null |
代码示例
Python 代码
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["a", 1, 1.1],
["b", -2, 0.9],
["c", 100, -0.01],
["d", -99, 100.9],
["a", 1, 1.1],
["b", -2, 0.9],
["c", 100, -0.01],
["d", -99, 100.9]
])
batchSource = BatchOperator.fromDataframe(df,schemaStr="f_string string, f_long long, f_double double")
trainOp = EqualWidthDiscretizerTrainBatchOp(). \
setSelectedCols(['f_long', 'f_double']). \
setNumBuckets(5). \
linkFrom(batchSource)
EqualWidthDiscretizerPredictBatchOp(). \
setSelectedCols(['f_long', 'f_double']). \
linkFrom(trainOp,batchSource). \
print()
trainOp = EqualWidthDiscretizerTrainBatchOp().setSelectedCols(['f_long', 'f_double']). \
setNumBucketsArray([5,3]). \
linkFrom(batchSource)
EqualWidthDiscretizerPredictBatchOp(). \
setSelectedCols(['f_long', 'f_double']). \
linkFrom(trainOp,batchSource). \
print()
EqualWidthDiscretizerPredictBatchOp(). \
setEncode("ASSEMBLED_VECTOR"). \
setSelectedCols(['f_long', 'f_double']). \
setOutputCols(["assVec"]). \
linkFrom(trainOp,batchSource).print()
Java 代码
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.feature.EqualWidthDiscretizerPredictBatchOp;
import com.alibaba.alink.operator.batch.feature.EqualWidthDiscretizerTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.feature.EqualWidthDiscretizerPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import com.alibaba.alink.params.feature.HasEncodeWithoutWoe.Encode;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class EqualWidthDiscretizerTrainBatchOpTest {
@Test
public void testEqualWidthDiscretizerTrainBatchOp2() throws Exception {
List <Row> df = Arrays.asList(
Row.of("a", 1, 1.1),
Row.of("b", -2, 0.9),
Row.of("c", 100, -0.01),
Row.of("d", -99, 100.9),
Row.of("a", 1, 1.1),
Row.of("b", -2, 0.9),
Row.of("c", 100, -0.01),
Row.of("d", -99, 100.9)
);
BatchOperator <?> batchSource = new MemSourceBatchOp(df, "f_string string, f_long int, f_double double");
BatchOperator <?> trainOp = new EqualWidthDiscretizerTrainBatchOp().setSelectedCols("f_long", "f_double")
.setNumBuckets(5).linkFrom(batchSource);
new EqualWidthDiscretizerPredictBatchOp().setSelectedCols("f_long","f_double")
.linkFrom(trainOp, batchSource).print();
BatchOperator trainOp2 = new EqualWidthDiscretizerTrainBatchOp().setSelectedCols("f_long", "f_double")
.setNumBucketsArray(5,3).linkFrom(batchSource);
new EqualWidthDiscretizerPredictBatchOp().setSelectedCols("f_long","f_double")
.linkFrom(trainOp2,batchSource).print();
new EqualWidthDiscretizerPredictBatchOp().setSelectedCols("f_long","f_double")
.setEncode(Encode.ASSEMBLED_VECTOR)
.setOutputCols("assVec")
.linkFrom(trainOp2,batchSource).print();
}
}
运行结果
f_string |
f_long |
f_double |
a |
2 |
0 |
b |
2 |
0 |
c |
4 |
0 |
d |
0 |
4 |
a |
2 |
0 |
b |
2 |
0 |
c |
4 |
0 |
d |
0 |
4 |
f_string |
f_long |
f_double |
a |
2 |
0 |
b |
2 |
0 |
c |
4 |
0 |
d |
0 |
2 |
a |
2 |
0 |
b |
2 |
0 |
c |
4 |
0 |
d |
0 |
2 |
f_string |
f_long |
f_double |
assVec |
a |
1 |
1.1000 |
$8$2:1.0 5:1.0 |
b |
-2 |
0.9000 |
$8$2:1.0 5:1.0 |
c |
100 |
-0.0100 |
$8$5:1.0 |
d |
-99 |
100.9000 |
$8$0:1.0 |
a |
1 |
1.1000 |
$8$2:1.0 5:1.0 |
b |
-2 |
0.9000 |
$8$2:1.0 5:1.0 |
c |
100 |
-0.0100 |
$8$5:1.0 |
d |
-99 |
100.9000 |
$8$0:1.0 |