Java 类名:com.alibaba.alink.operator.batch.feature.BucketizerBatchOp
Python 类名:BucketizerBatchOp
给定切分点,将连续变量分桶,需要选择需要进行切分的单列或多列,同时给出选中每列的切分点,每列切分点都是一个double数组,需要严格递增。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | ||
cutsArray | 多列的切分点 | 多列的切分点 | double[][] | |||
dropLast | 是否删除最后一个元素 | 删除最后一个元素是为了保证线性无关性。默认true | Boolean | true | ||
encode | 编码方法 | 编码方法 | String | “VECTOR”, “ASSEMBLED_VECTOR”, “INDEX” | “INDEX” | |
handleInvalid | 未知token处理策略 | 未知token处理策略。“keep”表示用最大id加1代替, “skip”表示补null, “error”表示抛异常 | String | “KEEP”, “ERROR”, “SKIP” | “KEEP” | |
leftOpen | 是否左开右闭 | 左开右闭为true,左闭右开为false | Boolean | true | ||
outputCols | 输出结果列列名数组 | 输出结果列列名数组,可选,默认null | String[] | null | ||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [1.1, True, "2", "A"], [1.1, False, "2", "B"], [1.1, True, "1", "B"], [2.2, True, "1", "A"] ]) inOp1 = BatchOperator.fromDataframe(df, schemaStr='double double, bool boolean, number int, str string') inOp2 = StreamOperator.fromDataframe(df, schemaStr='double double, bool boolean, number int, str string') bucketizer = BucketizerBatchOp().setSelectedCols(["double","number"]).setCutsArray([[1.0,2.0,2.2,4.0],[0.0,1.1]]) bucketizer.linkFrom(inOp1).print() bucketizer = BucketizerStreamOp().setSelectedCols(["double"]).setCutsArray([[2.0]]) bucketizer.linkFrom(inOp2).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.feature.BucketizerBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.feature.BucketizerStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class BucketizerBatchOpTest { @Test public void testBucketizerBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of(1.1, true, 2, "A"), Row.of(1.1, false, 2, "B"), Row.of(1.1, true, 1, "B"), Row.of(2.2, true, 1, "A") ); BatchOperator <?> inOp1 = new MemSourceBatchOp(df, "double double, bool boolean, number int, str string"); StreamOperator <?> inOp2 = new MemSourceStreamOp(df, "double double, bool boolean, number int, str string"); BatchOperator <?> bucketizer = new BucketizerBatchOp().setSelectedCols("double","number").setCutsArray( new double[] {1.0,2.0,2.2,4.0},new double[]{0.0,1.1}); bucketizer.linkFrom(inOp1).print(); StreamOperator <?> bucketizer2 = new BucketizerStreamOp().setSelectedCols("double").setCutsArray( new double[] {2.0}); bucketizer2.linkFrom(inOp2).print(); StreamOperator.execute(); } }
批预测结果
double | bool | number | str |
---|---|---|---|
0 | true | 2 | A |
1 | false | 2 | B |
2 | true | 1 | B |
3 | true | 1 | A |
流预测结果
double | bool | number | str |
---|---|---|---|
0 | false | 2 | B |
0 | true | 1 | B |
0 | true | 2 | A |
1 | true | 1 | A |