Java 类名:com.alibaba.alink.operator.batch.feature.CrossFeatureTrainBatchOp
Python 类名:CrossFeatureTrainBatchOp
将选定的特征列组合成单个向量类型的特征。
该组件是训练组件,需要配合预测组件 CrossFeaturePredictBatch/StreamOp 使用。
为了训练模型,需要指定参与组合的特征列名(selectedCols)。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["1.0", "1.0", 1.0, 1], ["1.0", "1.0", 0.0, 1], ["1.0", "0.0", 1.0, 1], ["1.0", "0.0", 1.0, 1], ["2.0", "3.0", None, 0], ["2.0", "3.0", 1.0, 0], ["0.0", "1.0", 2.0, 0], ["0.0", "1.0", 1.0, 0]]) data = BatchOperator.fromDataframe(df, schemaStr="f0 string, f1 string, f2 double, label bigint") train = CrossFeatureTrainBatchOp().setSelectedCols(['f0','f1','f2']).linkFrom(data) CrossFeaturePredictBatchOp().setOutputCol("cross").linkFrom(train, data).collectToDataframe()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.feature.CrossFeaturePredictBatchOp; import com.alibaba.alink.operator.batch.feature.CrossFeatureTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class CrossFeatureTrainBatchOpTest { @Test public void testCrossFeatureTrainBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of("1.0", "1.0", 1.0, 1), Row.of("1.0", "1.0", 0.0, 1), Row.of("1.0", "0.0", 1.0, 1), Row.of("1.0", "0.0", 1.0, 1), Row.of("2.0", "3.0", null, 0), Row.of("2.0", "3.0", 1.0, 0), Row.of("0.0", "1.0", 2.0, 0) ); BatchOperator <?> data = new MemSourceBatchOp(df, "f0 string, f1 string, f2 double, label int"); BatchOperator <?> train = new CrossFeatureTrainBatchOp().setSelectedCols("f0", "f1", "f2").linkFrom(data); new CrossFeaturePredictBatchOp().setOutputCol("cross").linkFrom(train, data).print(); } }
f0 | f1 | f2 | label | cross |
---|---|---|---|---|
1.0 | 1.0 | 1.0000 | 1 | $36$0:1.0 |
1.0 | 1.0 | 0.0000 | 1 | $36$9:1.0 |
1.0 | 0.0 | 1.0000 | 1 | $36$6:1.0 |
1.0 | 0.0 | 1.0000 | 1 | $36$6:1.0 |
2.0 | 3.0 | null | 0 | $36$22:1.0 |
2.0 | 3.0 | 1.0000 | 0 | $36$4:1.0 |
0.0 | 1.0 | 2.0000 | 0 | $36$29:1.0 |
0.0 | 1.0 | 1.0000 | 0 | $36$2:1.0 |