Java 类名:com.alibaba.alink.operator.stream.feature.CrossFeaturePredictStreamOp
Python 类名:CrossFeaturePredictStreamOp
将选定的特征列组合成单个向量类型的特征。
该组件是预测组件,需要配合预测组件 CrossFeatureTrainBatchOp 使用。
使用中指定输出列名(outputCol)即可。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
outputCol | 输出结果列列名 | 输出结果列列名,必选 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["1.0", "1.0", 1.0, 1], ["1.0", "1.0", 0.0, 1], ["1.0", "0.0", 1.0, 1], ["1.0", "0.0", 1.0, 1], ["2.0", "3.0", None, 0], ["2.0", "3.0", 1.0, 0], ["0.0", "1.0", 2.0, 0], ["0.0", "1.0", 1.0, 0]]) batchData = BatchOperator.fromDataframe(df, schemaStr="f0 string, f1 string, f2 double, label bigint") streamData = StreamOperator.fromDataframe(df, schemaStr="f0 string, f1 string, f2 double, label bigint") train = CrossFeatureTrainBatchOp().setSelectedCols(['f0','f1','f2']).linkFrom(batchData) CrossFeaturePredictStreamOp(train).setOutputCol("cross").linkFrom(streamData).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.feature.CrossFeaturePredictBatchOp; import com.alibaba.alink.operator.batch.feature.CrossFeatureTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class CrossFeaturePredictStreamOpTest { @Test public void testCrossFeaturePredictStreamOp() throws Exception { List <Row> df = Arrays.asList( Row.of("1.0", "1.0", 1.0, 1), Row.of("1.0", "1.0", 0.0, 1), Row.of("1.0", "0.0", 1.0, 1), Row.of("1.0", "0.0", 1.0, 1), Row.of("2.0", "3.0", null, 0), Row.of("2.0", "3.0", 1.0, 0), Row.of("0.0", "1.0", 2.0, 0) ); BatchOperator <?> batchData = new MemSourceBatchOp(df, "f0 string, f1 string, f2 double, label int"); StreamOperator<?> streamData = new MemSourceStreamOp(df, "f0 string, f1 string, f2 double, label int"); BatchOperator <?> train = new CrossFeatureTrainBatchOp().setSelectedCols("f0", "f1", "f2").linkFrom(batchData); new CrossFeaturePredictStreamOp(train).setOutputCol("cross").linkFrom(streamData).print(); StreamOperator.execute(); } }
f0 | f1 | f2 | label | cross |
---|---|---|---|---|
2.0 | 3.0 | 1.0000 | 0 | $36$7:1.0 |
0.0 | 1.0 | 2.0000 | 0 | $36$32:1.0 |
1.0 | 1.0 | 0.0000 | 1 | $36$12:1.0 |
1.0 | 1.0 | 1.0000 | 1 | $36$3:1.0 |
1.0 | 0.0 | 1.0000 | 1 | $36$0:1.0 |
1.0 | 0.0 | 1.0000 | 1 | $36$0:1.0 |
2.0 | 3.0 | null | 0 | $36$25:1.0 |