Java 类名:com.alibaba.alink.operator.stream.dataproc.vector.VectorImputerPredictStreamOp
Python 类名:VectorImputerPredictStreamOp
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
outputCol | 输出结果列 | 输出结果列列名,可选,默认null | String | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["1:3 2:4 4:7", 1], ["0:3 5:5", 3], ["2:4 4:5", 4] ]) dataStream = StreamOperator.fromDataframe(df, schemaStr="vec string, id bigint") data = BatchOperator.fromDataframe(df, schemaStr="vec string, id bigint") vecFill = VectorImputerTrainBatchOp().setSelectedCol("vec") model = data.link(vecFill) VectorImputerPredictStreamOp(model).setOutputCol("vec1").linkFrom(dataStream).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.dataproc.vector.VectorImputerTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.dataproc.vector.VectorImputerPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class VectorImputerPredictStreamOpTest { @Test public void testVectorImputerPredictStreamOp() throws Exception { List <Row> df = Arrays.asList( Row.of("1:3 2:4 4:7", 1), Row.of("0:3 5:5", 3), Row.of("2:4 4:5", 4) ); StreamOperator <?> dataStream = new MemSourceStreamOp(df, "vec string, id int"); BatchOperator <?> data = new MemSourceBatchOp(df, "vec string, id int"); BatchOperator <?> vecFill = new VectorImputerTrainBatchOp().setSelectedCol("vec"); BatchOperator <?> model = data.link(vecFill); new VectorImputerPredictStreamOp(model).setOutputCol("vec1").linkFrom(dataStream).print(); StreamOperator.execute(); } }
vec | id | vec1 |
---|---|---|
1:3,2:4,4:7 | 1 | 1:3.0 2:4.0 4:7.0 |
1:3,2:NaN | 3 | 1:3.0 2:4.0 |
2:4,4:5 | 4 | 2:4.0 4:5.0 |