Java 类名:com.alibaba.alink.operator.stream.dataproc.vector.VectorInteractionStreamOp
Python 类名:VectorInteractionStreamOp
对于输入的两个vector中的元素两两相乘,并组成一个新的向量。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
outputCol | 输出结果列列名 | 输出结果列列名,必选 | String | ✓ | ||
selectedCols | 选择的列名 | 计算列对应的列名列表 | String[] | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["$8$1:3,2:4,4:7", "$8$1:3,2:4,4:7"], ["$8$0:3,5:5", "$8$1:2,2:4,4:7"], ["$8$2:4,4:5", "$8$1:3,2:3,4:7"] ]) data = StreamOperator.fromDataframe(df, schemaStr="vec1 string, vec2 string") vecInter = VectorInteractionStreamOp().setSelectedCols(["vec1","vec2"]).setOutputCol("vec_product") data.link(vecInter).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.dataproc.vector.VectorInteractionStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class VectorInteractionStreamOpTest { @Test public void testVectorInteractionStreamOp() throws Exception { List <Row> df = Arrays.asList( Row.of("$8$1:3,2:4,4:7", "$8$1:3,2:4,4:7"), Row.of("$8$0:3,5:5", "$8$1:2,2:4,4:7"), Row.of("$8$2:4,4:5", "$8$1:3,2:3,4:7") ); StreamOperator <?> data = new MemSourceStreamOp(df, "vec1 string, vec2 string"); StreamOperator <?> vecInter = new VectorInteractionStreamOp().setSelectedCols("vec1", "vec2").setOutputCol( "vec_product"); data.link(vecInter).print(); StreamOperator.execute(); } }
vec1 | vec2 | vec_product |
---|---|---|
$8$2:4,4:5 | $8$1:3,2:3,4:7 | $64$10:12.0 12:15.0 18:12.0 20:15.0 34:28.0 36:35.0 |
$8$1:3,2:4,4:7 | $8$1:3,2:4,4:7 | $64$9:9.0 10:12.0 12:21.0 17:12.0 18:16.0 20:28.0 33:21.0 34:28.0 36:49.0 |
$8$0:3,5:5 | $8$1:2,2:4,4:7 | $64$8:6.0 13:10.0 16:12.0 21:20.0 32:21.0 37:35.0 |