Java 类名:com.alibaba.alink.operator.stream.clustering.BisectingKMeansPredictStreamOp
Python 类名:BisectingKMeansPredictStreamOp
二分k均值算法是k-means聚类算法的一个变体,主要是为了改进k-means算法随机选择初始质心的随机性造成聚类结果不确定性的问题.
Alink上算法包括二分K均值聚类训练,二分K均值聚类预测, 二分K均值聚类流式预测。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [0, "0 0 0"], [1, "0.1,0.1,0.1"], [2, "0.2,0.2,0.2"], [3, "9 9 9"], [4, "9.1 9.1 9.1"], [5, "9.2 9.2 9.2"] ]) inBatch = BatchOperator.fromDataframe(df, schemaStr='id int, vec string') inStream = StreamOperator.fromDataframe(df, schemaStr='id int, vec string') kmeansTrain = BisectingKMeansTrainBatchOp()\ .setVectorCol("vec")\ .setK(2)\ .linkFrom(inBatch) kmeansTrain.lazyPrint(10) predictBatch = BisectingKMeansPredictBatchOp()\ .setPredictionCol("pred")\ .linkFrom(kmeansTrain, inBatch) predictBatch.print() predictStream = BisectingKMeansPredictStreamOp(kmeansTrain)\ .setPredictionCol("pred")\ .linkFrom(inStream) predictStream.print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.clustering.BisectingKMeansPredictBatchOp; import com.alibaba.alink.operator.batch.clustering.BisectingKMeansTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.clustering.BisectingKMeansPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class BisectingKMeansPredictStreamOpTest { @Test public void testBisectingKMeansPredictStreamOp() throws Exception { List <Row> df = Arrays.asList( Row.of(0, "0 0 0"), Row.of(1, "0.1,0.1,0.1"), Row.of(2, "0.2,0.2,0.2"), Row.of(3, "9 9 9"), Row.of(4, "9.1 9.1 9.1"), Row.of(5, "9.2 9.2 9.2") ); BatchOperator <?> inBatch = new MemSourceBatchOp(df, "id int, vec string"); StreamOperator <?> inStream = new MemSourceStreamOp(df, "id int, vec string"); BatchOperator <?> kmeansTrain = new BisectingKMeansTrainBatchOp() .setVectorCol("vec") .setK(2) .linkFrom(inBatch); kmeansTrain.lazyPrint(10); BatchOperator <?> predictBatch = new BisectingKMeansPredictBatchOp() .setPredictionCol("pred") .linkFrom(kmeansTrain, inBatch); predictBatch.print(); StreamOperator <?> predictStream = new BisectingKMeansPredictStreamOp(kmeansTrain) .setPredictionCol("pred") .linkFrom(inStream); predictStream.print(); StreamOperator.execute(); } }
model_id | model_info |
---|---|
0 | {“vectorCol”:“"vec"”,“distanceType”:“"EUCLIDEAN"”,“k”:“2”,“vectorSize”:“3”} |
1048576 | {“clusterId”:1,“size”:6,“center”:{“data”:[4.6,4.6,4.6]},“cost”:364.61999999999995} |
2097152 | {“clusterId”:2,“size”:3,“center”:{“data”:[0.1,0.1,0.1]},“cost”:0.06} |
3145728 | {“clusterId”:3,“size”:3,“center”:{“data”:[9.099999999999998,9.099999999999998,9.099999999999998]},“cost”:0.060000000000172804} |
id | vec | pred |
---|---|---|
0 | 0 0 0 | 0 |
1 | 0.1,0.1,0.1 | 0 |
2 | 0.2,0.2,0.2 | 0 |
3 | 9 9 9 | 1 |
4 | 9.1 9.1 9.1 | 1 |
5 | 9.2 9.2 9.2 | 1 |