Java 类名:com.alibaba.alink.operator.stream.clustering.GmmPredictStreamOp
Python 类名:GmmPredictStreamOp
基于GaussianMixture模型进行聚类预测。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
vectorCol | 向量列名 | 向量列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ["-0.6264538 0.1836433"], ["-0.8356286 1.5952808"], ["0.3295078 -0.8204684"], ["0.4874291 0.7383247"], ["0.5757814 -0.3053884"], ["1.5117812 0.3898432"], ["-0.6212406 -2.2146999"], ["11.1249309 9.9550664"], ["9.9838097 10.9438362"], ["10.8212212 10.5939013"], ["10.9189774 10.7821363"], ["10.0745650 8.0106483"], ["10.6198257 9.9438713"], ["9.8442045 8.5292476"], ["9.5218499 10.4179416"], ]) data = BatchOperator.fromDataframe(df_data, schemaStr='features string') dataStream = StreamOperator.fromDataframe(df_data, schemaStr='features string') gmm = GmmTrainBatchOp() \ .setVectorCol("features") \ .setEpsilon(0.) model = gmm.linkFrom(data) predictor = GmmPredictBatchOp() \ .setPredictionCol("cluster_id") \ .setVectorCol("features") \ .setPredictionDetailCol("cluster_detail") predictor.linkFrom(model, data).print() predictorStream = GmmPredictStreamOp(model) \ .setPredictionCol("cluster_id") \ .setVectorCol("features") \ .setPredictionDetailCol("cluster_detail") predictorStream.linkFrom(dataStream).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.clustering.GmmPredictBatchOp; import com.alibaba.alink.operator.batch.clustering.GmmTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.clustering.GmmPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class GmmPredictStreamOpTest { @Test public void testGmmPredictStreamOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("-0.6264538 0.1836433"), Row.of("-0.8356286 1.5952808"), Row.of("0.3295078 -0.8204684"), Row.of("0.4874291 0.7383247"), Row.of("0.5757814 -0.3053884"), Row.of("1.5117812 0.3898432"), Row.of("-0.6212406 -2.2146999"), Row.of("11.1249309 9.9550664"), Row.of("9.9838097 10.9438362"), Row.of("10.8212212 10.5939013"), Row.of("10.9189774 10.7821363"), Row.of("10.0745650 8.0106483"), Row.of("10.6198257 9.9438713"), Row.of("9.8442045 8.5292476"), Row.of("9.5218499 10.4179416") ); BatchOperator <?> data = new MemSourceBatchOp(df_data, "features string"); StreamOperator <?> dataStream = new MemSourceStreamOp(df_data, "features string"); BatchOperator <?> gmm = new GmmTrainBatchOp() .setVectorCol("features") .setEpsilon(0.); BatchOperator <?> model = gmm.linkFrom(data); BatchOperator <?> predictor = new GmmPredictBatchOp() .setPredictionCol("cluster_id") .setVectorCol("features") .setPredictionDetailCol("cluster_detail"); predictor.linkFrom(model, data).print(); StreamOperator <?> predictorStream = new GmmPredictStreamOp(model) .setPredictionCol("cluster_id") .setVectorCol("features") .setPredictionDetailCol("cluster_detail"); predictorStream.linkFrom(dataStream).print(); StreamOperator.execute(); } }
features | cluster_id | cluster_detail |
---|---|---|
-0.6264538 0.1836433 | 1 | 4.2752739140319505E-92 1.0 |
-0.8356286 1.5952808 | 1 | 1.0260377730418951E-92 1.0 |
0.3295078 -0.8204684 | 1 | 1.097017336765683E-80 1.0 |
0.4874291 0.7383247 | 1 | 3.3021731323490106E-75 1.0 |
0.5757814 -0.3053884 | 1 | 3.163811360548103E-76 1.0 |
1.5117812 0.3898432 | 1 | 2.1018052308895397E-62 1.0 |
-0.6212406 -2.2146999 | 1 | 6.772270268679667E-97 1.0 |
11.1249309 9.9550664 | 0 | 1.0 3.1567838012477056E-56 |
9.9838097 10.9438362 | 0 | 1.0 1.9024447346702016E-51 |
10.8212212 10.5939013 | 0 | 1.0 2.800973098729602E-56 |
10.9189774 10.7821363 | 0 | 1.0 1.7209132744891742E-57 |
10.0745650 8.0106483 | 0 | 1.0 2.8642696635133805E-43 |
10.6198257 9.9438713 | 0 | 1.0 5.773273991940741E-53 |
9.8442045 8.5292476 | 0 | 1.0 2.527312305092764E-43 |
9.5218499 10.4179416 | 0 | 1.0 1.7314580596765114E-46 |