Java 类名:com.alibaba.alink.operator.stream.clustering.KMeansPredictStreamOp
Python 类名:KMeansPredictStreamOp
KMeans 是一个经典的聚类算法。
基本思想是:以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。
Alink上KMeans算法包括KMeans,KMeans批量预测, KMeans流式预测。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
predictionDistanceCol | 预测距离列名 | 预测距离列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 | ||
modelStreamFilePath | 模型流的文件路径 | 模型流的文件路径 | String | null | ||
modelStreamScanInterval | 扫描模型路径的时间间隔 | 描模型路径的时间间隔,单位秒 | Integer | 10 | ||
modelStreamStartTime | 模型流的起始时间 | 模型流的起始时间。默认从当前时刻开始读。使用yyyy-mm-dd hh:mm:ss.fffffffff格式,详见Timestamp.valueOf(String s) | String | null |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [0, "0 0 0"], [1, "0.1,0.1,0.1"], [2, "0.2,0.2,0.2"], [3, "9 9 9"], [4, "9.1 9.1 9.1"], [5, "9.2 9.2 9.2"] ]) inOp1 = BatchOperator.fromDataframe(df, schemaStr='id int, vec string') inOp2 = StreamOperator.fromDataframe(df, schemaStr='id int, vec string') kmeans = KMeansTrainBatchOp()\ .setVectorCol("vec")\ .setK(2)\ .linkFrom(inOp1) kmeans.lazyPrint(10) predictBatch = KMeansPredictBatchOp()\ .setPredictionCol("pred")\ .linkFrom(kmeans, inOp1) predictBatch.print() predictStream = KMeansPredictStreamOp(kmeans)\ .setPredictionCol("pred")\ .linkFrom(inOp2) predictStream.print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.clustering.KMeansPredictBatchOp; import com.alibaba.alink.operator.batch.clustering.KMeansTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.clustering.KMeansPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class KMeansPredictBatchOpTest { @Test public void testKMeansPredictBatchOp() throws Exception { List <Row> df = Arrays.asList( Row.of(0, "0 0 0"), Row.of(1, "0.1,0.1,0.1"), Row.of(2, "0.2,0.2,0.2"), Row.of(3, "9 9 9"), Row.of(4, "9.1 9.1 9.1"), Row.of(5, "9.2 9.2 9.2") ); BatchOperator <?> inOp1 = new MemSourceBatchOp(df, "id int, vec string"); StreamOperator <?> inOp2 = new MemSourceStreamOp(df, "id int, vec string"); BatchOperator <?> kmeans = new KMeansTrainBatchOp() .setVectorCol("vec") .setK(2) .linkFrom(inOp1); kmeans.lazyPrint(10); BatchOperator <?> predictBatch = new KMeansPredictBatchOp() .setPredictionCol("pred") .linkFrom(kmeans, inOp1); predictBatch.print(); StreamOperator <?> predictStream = new KMeansPredictStreamOp(kmeans) .setPredictionCol("pred") .linkFrom(inOp2); predictStream.print(); StreamOperator.execute(); } }
model_id | model_info |
---|---|
0 | {“vectorCol”:“"vec"”,“latitudeCol”:null,“longitudeCol”:null,“distanceType”:“"EUCLIDEAN"”,“k”:“2”,“vectorSize”:“3”} |
1048576 | {“clusterId”:0,“weight”:3.0,“vec”:{“data”:[9.099999999999998,9.099999999999998,9.099999999999998]}} |
2097152 | {“clusterId”:1,“weight”:3.0,“vec”:{“data”:[0.1,0.1,0.1]}} |
id | vec | pred |
---|---|---|
0 | 0 0 0 | 1 |
1 | 0.1,0.1,0.1 | 1 |
2 | 0.2,0.2,0.2 | 1 |
3 | 9 9 9 | 0 |
4 | 9.1 9.1 9.1 | 0 |
5 | 9.2 9.2 9.2 | 0 |