一趟聚类 (OnePassClusterStreamOp)

Java 类名:com.alibaba.alink.operator.stream.clustering.OnePassClusterStreamOp

Python 类名:OnePassClusterStreamOp

功能介绍

对流式数据进行one-pass KMeans聚类,数据按批次更新cluster中心点。

本算法组件有两个输入,一个是初始的Kmeans模型,一个是流式数据。第一个输入用来初始化模型,第二个输入用来更新模型,并且输出对应数据点的分类。

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
predictionCol 预测结果列名 预测结果列名 String
epsilon 临域距离阈值 临域距离阈值 Double 1.7976931348623157E308
modelOutputInterval 模型输出间隔 模型输出间隔,间隔多少条样本输出一个模型 Integer null
predictionDetailCol 预测详细信息列名 预测详细信息列名 String
reservedCols 算法保留列名 算法保留列 String[] null

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
  [0, "0 0 0"],
  [1, "0.1,0.1,0.1"],
  [2, "0.2,0.2,0.2"],
  [3, "9 9 9"],
  [4, "9.1 9.1 9.1"],
  [5, "9.2 9.2 9.2"]
])

batch_data = BatchOperator.fromDataframe(df, schemaStr='id int, vec string')
stream_data = StreamOperator.fromDataframe(df, schemaStr='id int, vec string')

init_model = KMeansTrainBatchOp()\
    .setVectorCol("vec")\
    .setK(2)\
    .linkFrom(batch_data)

onepassCluster = OnePassClusterStreamOp(init_model) \
  .setPredictionCol("pred")\
  .setPredictionDetailCol("distance")\
  .setModelOutputInterval(100)\
  .setEpsilon(1.)\
  .linkFrom(stream_data)
onepassCluster.print()
StreamOperator.execute()

Java 代码


import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.clustering.KMeansTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.clustering.OnePassClusterStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class OnePassClusterStreamOpTest { @Test public void testOnePassClusterStreamOp() throws Exception { List <Row> dataRows = Arrays.asList( Row.of(0, "0 0 0"), Row.of(1, "0.1,0.1,0.1"), Row.of(2, "0.2,0.2,0.2"), Row.of(3, "9 9 9"), Row.of(4, "9.1 9.1 9.1"), Row.of(5, "9.2 9.2 9.2") ); BatchOperator <?> batchData = new MemSourceBatchOp(dataRows, "id int, vec string"); StreamOperator <?> streamData = new MemSourceStreamOp(dataRows, "id int, vec string"); KMeansTrainBatchOp kmeansModel = new KMeansTrainBatchOp() .setVectorCol("vec") .setK(2) .linkFrom(batchData); OnePassClusterStreamOp onePassClusterStreamOp = new OnePassClusterStreamOp(kmeansModel) .setPredictionCol("pred") .setPredictionDetailCol("distance") .setModelOutputInterval(100) .setEpsilon(1.) .linkFrom(streamData); onePassClusterStreamOp.print(); StreamOperator.execute(); } }

运行结果

id vec pred distance
4 9.1 9.1 9.1 2 0.1732
3 9 9 9 2 0.0000
2 0.2,0.2,0.2 1 0.1732
5 9.2 9.2 9.2 0 0.1732
1 0.1,0.1,0.1 1 0.0231
0 0 0 0 1 0.2454