K均值聚类训练 (KMeansTrainBatchOp)

Java 类名:com.alibaba.alink.operator.batch.clustering.KMeansTrainBatchOp

Python 类名:KMeansTrainBatchOp

功能介绍

Kmeans算法的训练组件。KMeans是一个经典的聚类算法。该算法的基本思想是:以空间中k个点为中心进行聚类,对最靠近它们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。

距离度量方式

参数名称 参数描述 说明
EUCLIDEAN 欧式距离
COSINE 夹角余弦距离

参数说明

名称 中文名称 描述 类型 是否必须? 取值范围 默认值
vectorCol 向量列名 向量列对应的列名 String 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR]
distanceType 距离度量方式 聚类使用的距离类型 String “EUCLIDEAN”, “COSINE” “EUCLIDEAN”
epsilon 收敛阈值 当两轮迭代的中心点距离小于epsilon时,算法收敛。 Double 1.0E-4
initMode 中心点初始化方法 初始化中心点的方法,支持“K_MEANS_PARALLEL”和“RANDOM” String “RANDOM”, “K_MEANS_PARALLEL” “RANDOM”
initSteps k-means++初始化迭代步数 k-means初始化中心点时迭代的步数 Integer 2
k 聚类中心点数量 聚类中心点数量 Integer 2
maxIter 最大迭代步数 最大迭代步数,默认为 50。 Integer 50
randomSeed 随机数种子 随机数种子 Integer 0

代码示例

Python 代码

from pyalink.alink import *

import pandas as pd

useLocalEnv(1)

df = pd.DataFrame([
    [0, "0 0 0"],
    [1, "0.1,0.1,0.1"],
    [2, "0.2,0.2,0.2"],
    [3, "9 9 9"],
    [4, "9.1 9.1 9.1"],
    [5, "9.2 9.2 9.2"]
])

inOp1 = BatchOperator.fromDataframe(df, schemaStr='id int, vec string')
inOp2 = StreamOperator.fromDataframe(df, schemaStr='id int, vec string')

kmeans = KMeansTrainBatchOp()\
    .setVectorCol("vec")\
    .setK(2)\
    .linkFrom(inOp1)
kmeans.lazyPrint(10)

predictBatch = KMeansPredictBatchOp()\
    .setPredictionCol("pred")\
    .linkFrom(kmeans, inOp1)
predictBatch.print()

predictStream = KMeansPredictStreamOp(kmeans)\
    .setPredictionCol("pred")\
    .linkFrom(inOp2)
predictStream.print()

StreamOperator.execute()

Java 代码

import org.apache.flink.types.Row;

import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.clustering.KMeansPredictBatchOp;
import com.alibaba.alink.operator.batch.clustering.KMeansTrainBatchOp;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.stream.StreamOperator;
import com.alibaba.alink.operator.stream.clustering.KMeansPredictStreamOp;
import com.alibaba.alink.operator.stream.source.MemSourceStreamOp;
import org.junit.Test;

import java.util.Arrays;
import java.util.List;

public class KMeansTrainBatchOpTest {
	@Test
	public void testKMeansTrainBatchOp() throws Exception {
		List <Row> df = Arrays.asList(
			Row.of(0, "0 0 0"),
			Row.of(1, "0.1,0.1,0.1"),
			Row.of(2, "0.2,0.2,0.2"),
			Row.of(3, "9 9 9"),
			Row.of(4, "9.1 9.1 9.1"),
			Row.of(5, "9.2 9.2 9.2")
		);
		BatchOperator <?> inOp1 = new MemSourceBatchOp(df, "id int, vec string");
		StreamOperator <?> inOp2 = new MemSourceStreamOp(df, "id int, vec string");
		BatchOperator <?> kmeans = new KMeansTrainBatchOp()
			.setVectorCol("vec")
			.setK(2)
            .linkFrom(inOp1);
		kmeans.lazyPrint(10);

		BatchOperator <?> predictBatch = new KMeansPredictBatchOp()
			.setPredictionCol("pred")
            .linkFrom(kmeans, inOp1);
		predictBatch.print();

		StreamOperator <?> predictStream = new KMeansPredictStreamOp(kmeans)
			.setPredictionCol("pred")
            .linkFrom(inOp2);
		predictStream.print();
		StreamOperator.execute();
	}
}

运行结果

模型结果

model_id model_info
0 {“vectorCol”:“"vec"”,“latitudeCol”:null,“longitudeCol”:null,“distanceType”:“"EUCLIDEAN"”,“k”:“2”,“vectorSize”:“3”}
1048576 {“clusterId”:0,“weight”:3.0,“vec”:{“data”:[9.099999999999998,9.099999999999998,9.099999999999998]}}
2097152 {“clusterId”:1,“weight”:3.0,“vec”:{“data”:[0.1,0.1,0.1]}}

预测结果

id vec pred
0 0 0 0 1
1 0.1,0.1,0.1 1
2 0.2,0.2,0.2 1
3 9 9 9 0
4 9.1 9.1 9.1 0
5 9.2 9.2 9.2 0