Java 类名:com.alibaba.alink.operator.batch.clustering.GroupKMeansBatchOp
Python 类名:GroupKMeansBatchOp
分组Kmeans聚类算法。本算法按照用户指定的分组列(groupCol)将数据分成很多个组,然后分别对这些组进行Kmeans聚类。算法的输出值是每个数据点的所属类别。
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| featureCols | 特征列名 | 特征列名,必选 | String[] | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
| groupCols | 分组列名,多列 | 分组列名,多列,必选 | String[] | ✓ | ||
| idCol | id列名 | id列名 | String | ✓ | ||
| predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
| distanceType | 距离度量方式 | 距离类型 | String | “EUCLIDEAN”, “COSINE”, “CITYBLOCK” | “EUCLIDEAN” | |
| epsilon | 收敛阈值 | 当两轮迭代的中心点距离小于epsilon时,算法收敛。 | Double | 1.0E-4 | ||
| k | 聚类中心点数量 | 聚类中心点数量 | Integer | 2 | ||
| maxIter | 最大迭代步数 | 最大迭代步数,默认为 10。 | Integer | 10 |
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
[0, "id_1", 2.0, 3.0],
[0, "id_2", 2.1, 3.1],
[0, "id_18", 2.4, 3.2],
[0, "id_15", 2.8, 3.2],
[0, "id_12", 2.1, 3.1],
[0, "id_3", 200.1, 300.1],
[0, "id_4", 200.2, 300.2],
[0, "id_8", 200.6, 300.6],
[1, "id_5", 200.3, 300.3],
[1, "id_6", 200.4, 300.4],
[1, "id_7", 200.5, 300.5],
[1, "id_16", 300., 300.2],
[1, "id_9", 2.1, 3.1],
[1, "id_10", 2.2, 3.2],
[1, "id_11", 2.3, 3.3],
[1, "id_13", 2.4, 3.4],
[1, "id_14", 2.5, 3.5],
[1, "id_17", 2.6, 3.6],
[1, "id_19", 2.7, 3.7],
[1, "id_20", 2.8, 3.8],
[1, "id_21", 2.9, 3.9],
[2, "id_20", 2.8, 3.8]])
source = BatchOperator.fromDataframe(df, schemaStr='group string, id string, c1 double, c2 double')
groupKmeans = GroupKMeansBatchOp()\
.setGroupCols(["group"])\
.setK(2)\
.setMaxIter(50)\
.setPredictionCol("pred")\
.setEpsilon(1e-8)\
.setFeatureCols(["c1", "c2"])\
.setIdCol("id")\
.linkFrom(source)
groupKmeans.print()
package com.alibaba.alink.operator.batch.clustering;
import org.apache.flink.types.Row;
import com.alibaba.alink.operator.batch.BatchOperator;
import com.alibaba.alink.operator.batch.source.MemSourceBatchOp;
import com.alibaba.alink.operator.batch.clustering.GroupKMeansBatchOp;
import org.junit.Test;
import java.util.Arrays;
import java.util.List;
public class GroupKmeansBatchOpTest {
@Test
public void testGroupKmeansBatchOp() throws Exception {
List<Row> trainData = Arrays.asList(
Row.of(0, "id_1", 2.0, 3.0),
Row.of(0, "id_2", 2.1, 3.1),
Row.of(0, "id_18", 2.4, 3.2),
Row.of(0, "id_15", 2.8, 3.2),
Row.of(0, "id_12", 2.1, 3.1),
Row.of(0, "id_3", 200.1, 300.1),
Row.of(0, "id_4", 200.2, 300.2),
Row.of(0, "id_8", 200.6, 300.6),
Row.of(1, "id_5", 200.3, 300.3),
Row.of(1, "id_6", 200.4, 300.4),
Row.of(1, "id_7", 200.5, 300.5),
Row.of(1, "id_16", 300., 300.2),
Row.of(1, "id_9", 2.1, 3.1),
Row.of(1, "id_10", 2.2, 3.2),
Row.of(1, "id_11", 2.3, 3.3),
Row.of(1, "id_13", 2.4, 3.4),
Row.of(1, "id_14", 2.5, 3.5),
Row.of(1, "id_17", 2.6, 3.6),
Row.of(1, "id_19", 2.7, 3.7),
Row.of(1, "id_20", 2.8, 3.8),
Row.of(1, "id_21", 2.9, 3.9),
Row.of(2, "id_20", 2.8, 3.8)
);
MemSourceBatchOp inputOp = new MemSourceBatchOp(trainData,
new String[] {"group", "id", "c1", "c2"});
GroupKMeansBatchOp op = new GroupKMeansBatchOp()
.setGroupCols(new String[] {"group"})
.setK(2)
.setMaxIter(50)
.setPredictionCol("pred")
.setEpsilon(1e-8)
.setFeatureCols(new String[] {"c1", "c2"})
.setIdCol("id")
.linkFrom(inputOp);
op.print();
}
}
group|id|pred
-----|---|----
1|id_10|0
1|id_17|0
1|id_13|0
1|id_6|1
1|id_9|0
1|id_11|0
1|id_14|0
1|id_20|0
1|id_7|1
1|id_16|1
......
1|id_21|0
0|id_2|0
0|id_3|1
0|id_15|0
0|id_1|0
0|id_18|0
0|id_12|0
0|id_8|1
0|id_4|1
2|id_20|0