Java 类名:com.alibaba.alink.operator.batch.clustering.KModesTrainBatchOp
Python 类名:KModesTrainBatchOp
KModes是一种用于离散数据/分类数据(categorical data)的聚类算法。 基本思想是:把n个对象分为k个簇,使簇内具有较小的的相异度(或者称距离)。 距离计算方法:两个字符串比较,相同为0,不同为1。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
featureCols | 特征列名 | 特征列名,必选 | String[] | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
k | 聚类中心点数量 | 聚类中心点数量 | Integer | 2 | ||
numIter | 迭代次数 | 迭代次数,默认为10 | Integer | 10 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ ["pc", "Hp.com"], ["camera", "Hp.com"], ["digital camera", "Hp.com"], ["camera", "BestBuy.com"], ["digital camera", "BestBuy.com"], ["tv", "BestBuy.com"], ["flower", "Teleflora.com"], ["flower", "Orchids.com"] ]) inOp1 = BatchOperator.fromDataframe(df, schemaStr='f0 string, f1 string') inOp2 = StreamOperator.fromDataframe(df, schemaStr='f0 string, f1 string') kmodes = KModesTrainBatchOp()\ .setFeatureCols(["f0", "f1"])\ .setK(2)\ .linkFrom(inOp1) predict = KModesPredictBatchOp()\ .setPredictionCol("pred")\ .linkFrom(kmodes, inOp1) kmodes.lazyPrint(10) predict.print() predict = KModesPredictStreamOp(kmodes)\ .setPredictionCol("pred")\ .linkFrom(inOp2) predict.print() StreamOperator.execute()
model_id model_info
0 0 {"featureCols":"[\"f0\",\"f1\"]"}
1 1048576 {"center":"[\"camera\",\"BestBuy.com\"]","clus...
2 2097152 {"center":"[\"flower\",\"Hp.com\"]","clusterId...
f0 f1 pred
0 pc Hp.com 1
1 camera Hp.com 1
2 digital camera Hp.com 1
3 camera BestBuy.com 0
4 digital camera BestBuy.com 0
5 tv BestBuy.com 0
6 flower Teleflora.com 0
7 flower Orchids.com 0