Java 类名:com.alibaba.alink.operator.batch.clustering.KModesTrainBatchOp
Python 类名:KModesTrainBatchOp
KModes是一种用于离散数据/分类数据(categorical data)的聚类算法。 基本思想是:把n个对象分为k个簇,使簇内具有较小的的相异度(或者称距离)。 距离计算方法:两个字符串比较,相同为0,不同为1。
| 名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
|---|---|---|---|---|---|---|
| featureCols | 特征列名 | 特征列名,必选 | String[] | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
| k | 聚类中心点数量 | 聚类中心点数量 | Integer | 2 | ||
| numIter | 迭代次数 | 迭代次数,默认为10 | Integer | 10 |
from pyalink.alink import *
import pandas as pd
useLocalEnv(1)
df = pd.DataFrame([
["pc", "Hp.com"],
["camera", "Hp.com"],
["digital camera", "Hp.com"],
["camera", "BestBuy.com"],
["digital camera", "BestBuy.com"],
["tv", "BestBuy.com"],
["flower", "Teleflora.com"],
["flower", "Orchids.com"]
])
inOp1 = BatchOperator.fromDataframe(df, schemaStr='f0 string, f1 string')
inOp2 = StreamOperator.fromDataframe(df, schemaStr='f0 string, f1 string')
kmodes = KModesTrainBatchOp()\
.setFeatureCols(["f0", "f1"])\
.setK(2)\
.linkFrom(inOp1)
predict = KModesPredictBatchOp()\
.setPredictionCol("pred")\
.linkFrom(kmodes, inOp1)
kmodes.lazyPrint(10)
predict.print()
predict = KModesPredictStreamOp(kmodes)\
.setPredictionCol("pred")\
.linkFrom(inOp2)
predict.print()
StreamOperator.execute()
model_id model_info
0 0 {"featureCols":"[\"f0\",\"f1\"]"}
1 1048576 {"center":"[\"camera\",\"BestBuy.com\"]","clus...
2 2097152 {"center":"[\"flower\",\"Hp.com\"]","clusterId...
f0 f1 pred
0 pc Hp.com 1
1 camera Hp.com 1
2 digital camera Hp.com 1
3 camera BestBuy.com 0
4 digital camera BestBuy.com 0
5 tv BestBuy.com 0
6 flower Teleflora.com 0
7 flower Orchids.com 0