Java 类名:com.alibaba.alink.operator.batch.clustering.GmmTrainBatchOp
Python 类名:GmmTrainBatchOp
混合模型(Mixture Model)是一个可以用来表示在总体分布中含有K个子分布的概率模型。换句话说,混合模型表示了观测数据在总体中的概率分布,它是一个由K个子分布组成的混合分布。
而高斯混合模型(Gaussian Mixture Model, GMM)可以用来表示在总体分布中含有K个高斯子分布的概率模型。它通常可以被用作分类模型。
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
vectorCol | 向量列名 | 向量列对应的列名 | String | ✓ | 所选列类型为 [DENSE_VECTOR, SPARSE_VECTOR, STRING, VECTOR] | |
epsilon | 收敛阈值 | 当两轮迭代的中心点距离小于epsilon时,算法收敛。 | Double | 1.0E-4 | ||
k | 聚类中心点数量 | 聚类中心点数量 | Integer | 2 | ||
maxIter | 最大迭代步数 | 最大迭代步数,默认为 100 | Integer | x >= 1 | 100 | |
randomSeed | 随机数种子 | 随机数种子 | Integer | 0 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df_data = pd.DataFrame([ ["-0.6264538 0.1836433"], ["-0.8356286 1.5952808"], ["0.3295078 -0.8204684"], ["0.4874291 0.7383247"], ["0.5757814 -0.3053884"], ["1.5117812 0.3898432"], ["-0.6212406 -2.2146999"], ["11.1249309 9.9550664"], ["9.9838097 10.9438362"], ["10.8212212 10.5939013"], ["10.9189774 10.7821363"], ["10.0745650 8.0106483"], ["10.6198257 9.9438713"], ["9.8442045 8.5292476"], ["9.5218499 10.4179416"], ]) data = BatchOperator.fromDataframe(df_data, schemaStr='features string') dataStream = StreamOperator.fromDataframe(df_data, schemaStr='features string') gmm = GmmTrainBatchOp() \ .setVectorCol("features") \ .setEpsilon(0.) model = gmm.linkFrom(data) predictor = GmmPredictBatchOp() \ .setPredictionCol("cluster_id") \ .setVectorCol("features") \ .setPredictionDetailCol("cluster_detail") predictor.linkFrom(model, data).print() predictorStream = GmmPredictStreamOp(model) \ .setPredictionCol("cluster_id") \ .setVectorCol("features") \ .setPredictionDetailCol("cluster_detail") predictorStream.linkFrom(dataStream).print() StreamOperator.execute()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.clustering.GmmPredictBatchOp; import com.alibaba.alink.operator.batch.clustering.GmmTrainBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.stream.StreamOperator; import com.alibaba.alink.operator.stream.clustering.GmmPredictStreamOp; import com.alibaba.alink.operator.stream.source.MemSourceStreamOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class GmmTrainBatchOpTest { @Test public void testGmmTrainBatchOp() throws Exception { List <Row> df_data = Arrays.asList( Row.of("-0.6264538 0.1836433"), Row.of("-0.8356286 1.5952808"), Row.of("0.3295078 -0.8204684"), Row.of("0.4874291 0.7383247"), Row.of("0.5757814 -0.3053884"), Row.of("1.5117812 0.3898432"), Row.of("-0.6212406 -2.2146999"), Row.of("11.1249309 9.9550664"), Row.of("9.9838097 10.9438362"), Row.of("10.8212212 10.5939013"), Row.of("10.9189774 10.7821363"), Row.of("10.0745650 8.0106483"), Row.of("10.6198257 9.9438713"), Row.of("9.8442045 8.5292476"), Row.of("9.5218499 10.4179416") ); BatchOperator <?> data = new MemSourceBatchOp(df_data, "features string"); StreamOperator <?> dataStream = new MemSourceStreamOp(df_data, "features string"); BatchOperator <?> gmm = new GmmTrainBatchOp() .setVectorCol("features") .setEpsilon(0.); BatchOperator <?> model = gmm.linkFrom(data); BatchOperator <?> predictor = new GmmPredictBatchOp() .setPredictionCol("cluster_id") .setVectorCol("features") .setPredictionDetailCol("cluster_detail"); predictor.linkFrom(model, data).print(); StreamOperator <?> predictorStream = new GmmPredictStreamOp(model) .setPredictionCol("cluster_id") .setVectorCol("features") .setPredictionDetailCol("cluster_detail"); predictorStream.linkFrom(dataStream).print(); StreamOperator.execute(); } }
features | cluster_id | cluster_detail |
---|---|---|
-0.6264538 0.1836433 | 1 | 4.275273913968281E-92 1.0 |
-0.8356286 1.5952808 | 1 | 1.0260377730239899E-92 1.0 |
0.3295078 -0.8204684 | 1 | 1.0970173367545207E-80 1.0 |
0.4874291 0.7383247 | 1 | 3.302173132311E-75 1.0 |
0.5757814 -0.3053884 | 1 | 3.1638113605165424E-76 1.0 |
1.5117812 0.3898432 | 1 | 2.101805230873173E-62 1.0 |
-0.6212406 -2.2146999 | 1 | 6.772270268600749E-97 1.0 |
11.1249309 9.9550664 | 0 | 1.0 3.156783801247968E-56 |
9.9838097 10.9438362 | 0 | 1.0 1.9024447346702425E-51 |
10.8212212 10.5939013 | 0 | 1.0 2.800973098729604E-56 |
10.9189774 10.7821363 | 0 | 1.0 1.7209132744891298E-57 |
10.0745650 8.0106483 | 0 | 1.0 2.8642696635130495E-43 |
10.6198257 9.9438713 | 0 | 1.0 5.773273991940433E-53 |
9.8442045 8.5292476 | 0 | 1.0 2.5273123050925483E-43 |
9.5218499 10.4179416 | 0 | 1.0 1.7314580596767853E-46 |