Java 类名:com.alibaba.alink.operator.batch.clustering.GroupDbscanBatchOp
Python 类名:GroupDbscanBatchOp
DBSCAN,Density-Based Spatial Clustering of Applications with Noise,是一个比较有代表性的基于密度的聚类算法。与划分和层次聚类方法不同,它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。
分组DBSCAN算法根据用户指定的“分组列”将输入数据分为多个组,然后在每个组内部进行DBSCAN聚类算法。
参数名称 | 参数描述 | 说明 |
---|---|---|
EUCLIDEAN | 欧式距离 | |
COSINE | 夹角余弦距离 | |
CITYBLOCK | 城市街区距离,也称曼哈顿距离 |
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
epsilon | 邻域距离阈值 | 邻域距离阈值 | Double | ✓ | ||
featureCols | 特征列名 | 特征列名,必选 | String[] | ✓ | 所选列类型为 [BIGDECIMAL, BIGINTEGER, BYTE, DOUBLE, FLOAT, INTEGER, LONG, SHORT] | |
groupCols | 分组列名,多列 | 分组列名,多列,必选 | String[] | ✓ | ||
idCol | id列名 | id列名 | String | ✓ | ||
minPoints | 邻域中样本个数的阈值 | 邻域中样本个数的阈值 | Integer | ✓ | ||
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
distanceType | 距离度量方式 | 聚类使用的距离类型 | String | “EUCLIDEAN”, “COSINE”, “CITYBLOCK”, “HAVERSINE”, “JACCARD” | “EUCLIDEAN” | |
groupMaxSamples | 每个分组的最大样本数 | 每个分组的最大样本数 | Integer | 2147483647 | ||
isOutputVector | 输出是否为向量格式 | 输出是否为向量格式 | Boolean | false | ||
skip | 每个分组超过最大样本数时,是否跳过 | 每个分组超过最大样本数时,是否跳过 | Boolean | false |
from pyalink.alink import * import pandas as pd useLocalEnv(1) df = pd.DataFrame([ [0, "id_1", 2.0, 3.0], [0, "id_2", 2.1, 3.1], [0, "id_18", 2.4, 3.2], [0, "id_15", 2.8, 3.2], [0, "id_12", 2.1, 3.1], [0, "id_3", 200.1, 300.1], [0, "id_4", 200.2, 300.2], [0, "id_8", 200.6, 300.6], [1, "id_5", 200.3, 300.3], [1, "id_6", 200.4, 300.4], [1, "id_7", 200.5, 300.5], [1, "id_16", 300., 300.2], [1, "id_9", 2.1, 3.1], [1, "id_10", 2.2, 3.2], [1, "id_11", 2.3, 3.3], [1, "id_13", 2.4, 3.4], [1, "id_14", 2.5, 3.5], [1, "id_17", 2.6, 3.6], [1, "id_19", 2.7, 3.7], [1, "id_20", 2.8, 3.8], [1, "id_21", 2.9, 3.9], [2, "id_20", 2.8, 3.8]]) source = BatchOperator.fromDataframe(df, schemaStr='group string, id string, c1 double, c2 double') groupDbscan = GroupDbscanBatchOp()\ .setIdCol("id")\ .setGroupCols(["group"])\ .setFeatureCols(["c1", "c2"])\ .setMinPoints(4)\ .setEpsilon(0.6)\ .linkFrom(source) groupDbscan.print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.batch.clustering.GroupDbscanBatchOp; import org.junit.Test; import java.util.Arrays; import java.util.List; public class GroupDbscanBatchOpTest { @Test public void testGroupDbscanBatchOp() throws Exception { List<Row> trainData = Arrays.asList( Row.of(0, "id_1", 2.0, 3.0), Row.of(0, "id_2", 2.1, 3.1), Row.of(0, "id_18", 2.4, 3.2), Row.of(0, "id_15", 2.8, 3.2), Row.of(0, "id_12", 2.1, 3.1), Row.of(0, "id_3", 200.1, 300.1), Row.of(0, "id_4", 200.2, 300.2), Row.of(0, "id_8", 200.6, 300.6), Row.of(1, "id_5", 200.3, 300.3), Row.of(1, "id_6", 200.4, 300.4), Row.of(1, "id_7", 200.5, 300.5), Row.of(1, "id_16", 300., 300.2), Row.of(1, "id_9", 2.1, 3.1), Row.of(1, "id_10", 2.2, 3.2), Row.of(1, "id_11", 2.3, 3.3), Row.of(1, "id_13", 2.4, 3.4), Row.of(1, "id_14", 2.5, 3.5), Row.of(1, "id_17", 2.6, 3.6), Row.of(1, "id_19", 2.7, 3.7), Row.of(1, "id_20", 2.8, 3.8), Row.of(1, "id_21", 2.9, 3.9), Row.of(2, "id_20", 2.8, 3.8) ); MemSourceBatchOp inputOp = new MemSourceBatchOp(trainData, new String[] {"group", "id", "c1", "c2"}); GroupDbscanBatchOp op = new GroupDbscanBatchOp() .setIdCol("id") .setGroupCols("group") .setFeatureCols("c1", "c2") .setMinPoints(4) .setEpsilon(0.6) .linkFrom(inputOp); op.print(); } }
group|id|type|cluster_id|c1|c2
-----|---|----|----------|---|---
1|id_5|NOISE|-2147483648|200.3000|300.3000
1|id_6|NOISE|-2147483648|200.4000|300.4000
1|id_7|NOISE|-2147483648|200.5000|300.5000
1|id_16|NOISE|-2147483648|300.0000|300.2000
1|id_9|CORE|0|2.1000|3.1000
1|id_10|CORE|0|2.2000|3.2000
1|id_11|CORE|0|2.3000|3.3000
1|id_13|CORE|0|2.4000|3.4000
1|id_14|CORE|0|2.5000|3.5000
1|id_17|CORE|0|2.6000|3.6000
......
1|id_21|CORE|0|2.9000|3.9000
0|id_1|CORE|0|2.0000|3.0000
0|id_2|CORE|0|2.1000|3.1000
0|id_18|CORE|0|2.4000|3.2000
0|id_15|LINKED|0|2.8000|3.2000
0|id_12|CORE|0|2.1000|3.1000
0|id_3|NOISE|-2147483648|200.1000|300.1000
0|id_4|NOISE|-2147483648|200.2000|300.2000
0|id_8|NOISE|-2147483648|200.6000|300.6000
2|id_20|NOISE|-2147483648|2.8000|3.8000