Java 类名:com.alibaba.alink.operator.batch.timeseries.DeepARPredictBatchOp
Python 类名:DeepARPredictBatchOp
使用 DeepAR 进行时间序列训练和预测。
参考文档 https://www.yuque.com/pinshu/alink_guide/xbp5ky
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
valueCol | value列,类型为MTable | value列,类型为MTable | String | ✓ | 所选列类型为 [M_TABLE, STRING] | |
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
predictNum | 预测条数 | 预测条数 | Integer | 1 | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) import time, datetime import numpy as np import pandas as pd data = pd.DataFrame([ [0, datetime.datetime.fromisoformat('2021-11-01 00:00:00'), 100.0], [0, datetime.datetime.fromisoformat('2021-11-02 00:00:00'), 100.0], [0, datetime.datetime.fromisoformat('2021-11-03 00:00:00'), 100.0], [0, datetime.datetime.fromisoformat('2021-11-04 00:00:00'), 100.0], [0, datetime.datetime.fromisoformat('2021-11-05 00:00:00'), 100.0] ]) source = dataframeToOperator(data, schemaStr='id int, ts timestamp, series double', op_type='batch') deepARTrainBatchOp = DeepARTrainBatchOp()\ .setTimeCol("ts")\ .setSelectedCol("series")\ .setNumEpochs(10)\ .setWindow(2)\ .setStride(1) groupByBatchOp = GroupByBatchOp()\ .setGroupByPredicate("id")\ .setSelectClause("mtable_agg(ts, series) as mtable_agg_series") deepARPredictBatchOp = DeepARPredictBatchOp()\ .setPredictNum(2)\ .setPredictionCol("pred")\ .setValueCol("mtable_agg_series") deepARPredictBatchOp\ .linkFrom( deepARTrainBatchOp.linkFrom(source), groupByBatchOp.linkFrom(source) )\ .print()
import org.apache.flink.types.Row; import com.alibaba.alink.operator.batch.BatchOperator; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import com.alibaba.alink.operator.batch.sql.GroupByBatchOp; import com.alibaba.alink.operator.batch.timeseries.DeepARPredictBatchOp; import com.alibaba.alink.operator.batch.timeseries.DeepARTrainBatchOp; import org.junit.Test; import java.sql.Timestamp; import java.util.Arrays; import java.util.List; public class DeepARTrainBatchOpTest { @Test public void testDeepARTrainBatchOp() throws Exception { BatchOperator.setParallelism(1); List <Row> data = Arrays.asList( Row.of(0, Timestamp.valueOf("2021-11-01 00:00:00"), 100.0), Row.of(0, Timestamp.valueOf("2021-11-02 00:00:00"), 100.0), Row.of(0, Timestamp.valueOf("2021-11-03 00:00:00"), 100.0), Row.of(0, Timestamp.valueOf("2021-11-04 00:00:00"), 100.0), Row.of(0, Timestamp.valueOf("2021-11-05 00:00:00"), 100.0) ); MemSourceBatchOp memSourceBatchOp = new MemSourceBatchOp(data, "id int, ts timestamp, series double"); DeepARTrainBatchOp deepARTrainBatchOp = new DeepARTrainBatchOp() .setTimeCol("ts") .setSelectedCol("series") .setNumEpochs(10) .setWindow(2) .setStride(1); GroupByBatchOp groupByBatchOp = new GroupByBatchOp() .setGroupByPredicate("id") .setSelectClause("mtable_agg(ts, series) as mtable_agg_series"); DeepARPredictBatchOp deepARPredictBatchOp = new DeepARPredictBatchOp() .setPredictNum(2) .setPredictionCol("pred") .setValueCol("mtable_agg_series"); deepARPredictBatchOp .linkFrom( deepARTrainBatchOp.linkFrom(memSourceBatchOp), groupByBatchOp.linkFrom(memSourceBatchOp) ) .print(); } }
| id | mtable_agg_series | pred |
|—-+————————————————————————————————————————————————————————————————————————–+———————————————————————————————————————————————————|
| 0 | {“data”:{“ts”:[“2021-11-01 00:00:00.0”,“2021-11-02 00:00:00.0”,“2021-11-03 00:00:00.0”,“2021-11-04 00:00:00.0”,“2021-11-05 00:00:00.0”],“series”:[100.0,100.0,100.0,100.0,100.0]},“schema”:“ts TIMESTAMP,series DOUBLE”} | {“data”:{“ts”:[“2021-11-06 00:00:00.0”,“2021-11-07 00:00:00.0”],“series”:[31.424224853515625,39.10265350341797]},“schema”:“ts TIMESTAMP,series DOUBLE”} |