Java 类名:com.alibaba.alink.operator.batch.timeseries.ProphetPredictBatchOp
Python 类名:ProphetPredictBatchOp
指定模型(通过ProphetTrainBatchOp训练得到),对每一行的MTable数据, 进行Prophet时间序列预测,给出下一时间段的预测结果。
Prophet是facebook开源的一个时间序列预测算法, github地址:https://github.com/facebook/prophet.
Prophet适用于具有明显的内在规律的数据, 例如:
参考文档 https://www.yuque.com/pinshu/alink_guide/xbp5ky
名称 | 中文名称 | 描述 | 类型 | 是否必须? | 取值范围 | 默认值 |
---|---|---|---|---|---|---|
predictionCol | 预测结果列名 | 预测结果列名 | String | ✓ | ||
valueCol | value列,类型为MTable | value列,类型为MTable | String | ✓ | 所选列类型为 [M_TABLE, STRING] | |
cap | cap | cap | Double | null | ||
changePointPriorScale | changepoint_prior_scale | changepoint_prior_scale | Double | 0.05 | ||
changePointRange | change_point_range | change_point_range | Double | 0.8 | ||
changePoints | changepoints | changepoints | String | null | ||
dailySeasonality | daily_seasonality | daily_seasonality | String | “auto” | ||
floor | floor | floor | Double | null | ||
growth | growth | growth | String | “LINEAR”, “LOGISTIC”, “FLAT” | “LINEAR” | |
holidays | 节假日 | 节假日,格式是 playoff:2008-01-13,2009-01-03 superbowl: 2010-02-07,2014-02-02 | String | null | ||
holidaysPriorScale | holidays_prior_scale | holidays_prior_scale | Double | 10.0 | ||
includeHistory | include_history | include_history | Boolean | false | ||
intervalWidth | interval_width | interval_width | Double | 0.8 | ||
mcmcSamples | mcmc_samples | mcmc_samples | Integer | 0 | ||
modelFilePath | 模型的文件路径 | 模型的文件路径 | String | null | ||
nChangePoint | n_change_point | n_change_point | Integer | 25 | ||
predictNum | 预测条数 | 预测条数 | Integer | 1 | ||
predictionDetailCol | 预测详细信息列名 | 预测详细信息列名 | String | |||
reservedCols | 算法保留列名 | 算法保留列 | String[] | null | ||
seasonalityMode | seasonality_mode | seasonality_mode | String | “MULTIPLICATIVE”, “ADDITIVE” | “ADDITIVE” | |
seasonalityPriorScale | seasonality_prior_scale | seasonality_prior_scale | Double | 10.0 | ||
stanInit | 初始值 | 初始值 | String | null | ||
uncertaintySamples | 用来计算指标的采样数目 | 用来计算指标的采样数目,设置成0,不计算指标。 | Integer | 1000 | ||
weeklySeasonality | weekly_seasonality | weekly_seasonality | String | “auto” | ||
yearlySeasonality | yearly_seasonality | yearly_seasonality | String | “auto” | ||
numThreads | 组件多线程线程个数 | 组件多线程线程个数 | Integer | 1 |
from pyalink.alink import * import pandas as pd useLocalEnv(1) import time, datetime import numpy as np import pandas as pd downloader = AlinkGlobalConfiguration.getPluginDownloader() downloader.downloadPlugin('tf115_python_env_linux') data = pd.DataFrame([ [1, datetime.datetime.fromtimestamp(1000), 10.0], [1, datetime.datetime.fromtimestamp(2000), 11.0], [1, datetime.datetime.fromtimestamp(3000), 12.0], [1, datetime.datetime.fromtimestamp(4000), 13.0], [1, datetime.datetime.fromtimestamp(5000), 14.0], [1, datetime.datetime.fromtimestamp(6000), 15.0], [1, datetime.datetime.fromtimestamp(7000), 16.0], [1, datetime.datetime.fromtimestamp(8000), 17.0], [1, datetime.datetime.fromtimestamp(9000), 18.0], [1, datetime.datetime.fromtimestamp(10000), 19.0] ]) source = dataframeToOperator(data, schemaStr='id int, ts timestamp, val double', op_type='batch') prophetModel = source.link(\ ProphetTrainBatchOp()\ .setTimeCol("ts")\ .setValueCol("val") ) ProphetPredictBatchOp()\ .setValueCol("data")\ .setPredictNum(4)\ .setPredictionCol("pred")\ .linkFrom( prophetModel, source.link(\ GroupByBatchOp()\ .setGroupByPredicate("id")\ .setSelectClause("id, mtable_agg(ts, val) as data") ) )\ .print()
package com.alibaba.alink.operator.batch.timeseries; import org.apache.flink.types.Row; import com.alibaba.alink.common.AlinkGlobalConfiguration; import com.alibaba.alink.operator.batch.sql.GroupByBatchOp; import com.alibaba.alink.operator.batch.source.MemSourceBatchOp; import org.junit.Test; import java.sql.Timestamp; import java.util.Arrays; public class ProphetBatchOpTest { @Test public void testModel() throws Exception { Row[] rowsData = new Row[] { Row.of(1, new Timestamp(1000), 10.0), Row.of(1, new Timestamp(2000), 11.0), Row.of(1, new Timestamp(3000), 12.0), Row.of(1, new Timestamp(4000), 13.0), Row.of(1, new Timestamp(5000), 14.0), Row.of(1, new Timestamp(6000), 15.0), Row.of(1, new Timestamp(7000), 16.0), Row.of(1, new Timestamp(8000), 17.0), Row.of(1, new Timestamp(9000), 18.0), Row.of(1, new Timestamp(10000), 19.0) }; String[] colNames = new String[] {"id", "ds1", "y1"}; //train batch model. MemSourceBatchOp source = new MemSourceBatchOp(Arrays.asList(rowsData), colNames); ProphetTrainBatchOp trainOp = new ProphetTrainBatchOp() .setTimeCol("ds1") .setValueCol("y1"); source.link(trainOp); trainOp.lazyPrint(); //construct times series by id. GroupByBatchOp groupData = new GroupByBatchOp() .setGroupByPredicate("id") .setSelectClause("mtable_agg(ds1, y1) as data"); ProphetPredictBatchOp predictOp = new ProphetPredictBatchOp() .setValueCol("data") .setPredictNum(4) .setPredictionCol("pred"); predictOp.linkFrom(trainOp, source.link(groupData)).print(); } }
id | data | predict |
---|---|---|
1 | {“data”:{“ts”:[“1970-01-01 08:00:00.001”,“1970-01-01 08:00:00.002”,“1970-01-01 08:00:00.003”,“1970-01-01 08:00:00.004”,“1970-01-01 08:00:00.005”,“1970-01-01 08:00:00.006”,“1970-01-01 08:00:00.007”,“1970-01-01 08:00:00.008”,“1970-01-01 08:00:00.009”,“1970-01-01 08:00:00.01”],“val”:[10.0,11.0,12.0,13.0,14.0,15.0,16.0,17.0,18.0,19.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} | {“data”:{“ts”:[“1970-01-01 08:00:00.011”,“1970-01-01 08:00:00.012”,“1970-01-01 08:00:00.013”,“1970-01-01 08:00:00.014”,“1970-01-01 08:00:00.015”,“1970-01-01 08:00:00.016”,“1970-01-01 08:00:00.017”,“1970-01-01 08:00:00.018”,“1970-01-01 08:00:00.019”,“1970-01-01 08:00:00.02”,“1970-01-01 08:00:00.021”,“1970-01-01 08:00:00.022”],“val”:[20.0,21.0,22.0,23.0,24.0,25.0,26.0,27.0,28.0,29.0,30.0,31.0]},“schema”:“ts TIMESTAMP,val DOUBLE”} |
t